Tìm x , biết :
4x + 4x + 3 = 4160
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x-34=46\Leftrightarrow40x=80\Leftrightarrow x=2\)
(4x-3).(4x+2) + (4x+5).(1-4x) = 2.52
16x2 + 8x - 12x - 6 + 4x - 16x2 + 5 - 20x = 50
(16x2 - 16x2) + ( 8x-12x+4x-20x) - (6-5) = 50
-20x = 50
x = -5/2
4x+4x+3=4160
\(\Rightarrow\)4x+4x.43=4160
\(\Rightarrow\)4x.(1+43)=4160
\(\Rightarrow\)4x.65=4160
\(\Rightarrow\)4x=4160:65
\(\Rightarrow\)4x=64
\(\Rightarrow\)4x=43
\(\Rightarrow\)x=3
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
a) \(x^3+4x=0\)
\(\Rightarrow x\left(x^2+4\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2+4=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2=-4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x\in\phi\end{array}\right.\)
Vậy: \(x=0\)
b) \(2\left(5-x\right)=4x-3\)
\(\Rightarrow10-2x=4x-3\)
\(\Rightarrow10+3=4x+2x\)
\(\Rightarrow13=6x\)
\(\Rightarrow x=\frac{13}{6}\)
x3+ 4x=0
<=> x(x2+4)=0
=> x=0 hoặc x2+4=0
Mà: x2+4 >4
=>x=0
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
\(4^x+4^{x+3}=4160\)
\(4^x\times\left(1+4^3\right)=4160\)
\(4^x\times\left(1+64\right)=4160\)
\(4^x\times65=4160\)
\(4^x=\frac{4160}{65}\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)