K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

b)Ta có:5333=(53)111=125111<243111=(35)111=3555

   Ta có:2400<2800=4400

3 tháng 8 2021

b) 5333 và 3555

5333=(53)111=125111

3555=(35)111=243111

Vì 125111<243111 nên 5333<3555

2400 và 4400

Vì 2<4 nên 2400<4400

2.

\(5^{333}=\left(5^3\right)^{111}=125^{111}\)

\(3^{555}=\left(3^5\right)^{111}=243^{111}\)

Vì \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)

Vậy \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)

2 tháng 8 2020

1) Ta có : (an)m = an.an...an   = an.m (đpcm)

                           m thừa số

2) a. Ta có 5333 = (53)111 = 125111

Lại có 3555 = (35)111 = 243111 

Vì 125 < 243 

=> 125111 < 243111

=> 5333 < 3555

b. 2400 = 24.100 = (24)100 = 16100

4200 = 42.100 = (42)100 = 16100

=> 2400 = 4200  (= 16100)

3) Ta có 32008 = (34)502 = 81502 

Vì ta có 81.81 = 6561 (có 4 chữ số)

=> 81.81.81 = 531441 (có 6 chữ số) 

Nhận thấy tích của x số 81 là số có 2x chữ số 

mà 81502 có 502 số 81 và số đó có 502 . 2 = 1004 chữ số < 1005

=> 32008 là số có ít hơn 1005 chữ số

27 tháng 1 2021

Nếu \(a>b\Rightarrow an>bn\Rightarrow ab+an>ab+bn\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Leftrightarrow\dfrac{a+n}{b+n}< \dfrac{a}{b}\)

Nếu \(a< b\Rightarrow an< bn\Rightarrow ab+an< ab+bn\)

\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow\dfrac{a+n}{b+n}>\dfrac{a}{b}\)

15 tháng 1 2023

a) Dễ thấy P = 102120 + 2120

= 102120 + 212.10

= 10(102119 + 212) 

=> P \(⋮10\)

Lại có P = 102120 + 2120

= 10(102119 + 212)

= 10.(1000...00 + 212) 

         2119 số 0

= 10.1000...0212

          2116 số 0

Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)

là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)

= 1 + 2 + 1 + 2 = 6 \(⋮3\)

=> S \(⋮3\Rightarrow P=10S⋮3\)

mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)

 

 

   

15 tháng 1 2023

Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)

=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2) ta được 

(10n + 15) - (10n + 4) \(⋮d\)

<=> 11 \(⋮d\)

\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)

<=> d = 11 

Vậy (a;b) = 11

AH
Akai Haruma
Giáo viên
2 tháng 8 2021

Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$

$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$

Do đó $A>B$

7 tháng 11 2016

a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)

- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)

- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)

Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)

7 tháng 11 2016

Cám ơn bạn nha