K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 8 2021

Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$

$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$

Do đó $A>B$

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

24 tháng 7 2021

A=nn+1+n+1n+2>nn+2+n+1n+2A=nn+1+n+1n+2>nn+2+n+1n+2

   =2n+1n+2>2n+12n+3=2n+1n+2>2n+12n+3

VẬY A>B  

Chúc bạn học tốt ( -_- )

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
7 tháng 10 2016

1) Số số hạng là n 

Tổng bằng : \(\frac{n\left(n+1\right)}{2}=378\\ \Rightarrow n\left(n+1\right)=756\\ \Rightarrow n\left(n+1\right)=27.28\\ \Rightarrow n=27\)

2) a) \(n+2⋮n-1\\ \Rightarrow n-1+3⋮n-1\\ \Rightarrow3⋮n-1\)

b) \(2n+7⋮n+1\\ \Rightarrow2\left(n+1\right)+5⋮n+1\\ \Rightarrow5⋮n+1\)

c) \(2n+1⋮6-n\\ \Rightarrow2\left(6-n\right)+13⋮6-n\\ \Rightarrow13⋮6-n\)

d) \(4n+3⋮2n+6\\ \Rightarrow2\left(2n+6\right)-9⋮2n+6\\ \Rightarrow9⋮2n+6\)

17 tháng 4 2022

b.\(B=\dfrac{2n+5}{n+3}\)

\(B=\dfrac{n+n+3+3-1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{n+3}{n+3}-\dfrac{1}{n+3}\)

\(B=1+1-\dfrac{1}{n+3}\)

Để B nguyên thì \(\dfrac{1}{n+3}\in Z\) hay \(n+3\in U\left(1\right)=\left\{\pm1\right\}\)

*n+3=1 => n=-2

*n+3=-1  => n= -4

Vậy \(n=\left\{-2;-4\right\}\) thì B có giá trị nguyên

17 tháng 4 2022

Thế câu a

16 tháng 7 2016

không trả lời

16 tháng 7 2016

không trả lời

5 tháng 11 2016

sao ko ai trả lời

16 tháng 7 2016

không trả lời