16n <1284
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
z và x có cùng số p trong hạt nhân nên cùng 1 loại ng tố
vậy chỉ có 3 ng tố hh
Gọi d = ƯCLN ( 16n + 5 ; 24n + 7 ) => 16n + 5 ⋮ d và 24n + 7 ⋮ d
=> 3.( 16n + 5 ) ⋮ d và 2.( 24n + 7 ) ⋮ d => 48n + 15 ⋮ d và 48n + 14 ⋮ d
=> (48n + 15) - (48n + 14) ⋮ d => d = 1
Vậy phân số 16n + 5 / 24n + 7 tối giản
gọi ĐLÀ ƯC16n+5\24n+7=
suy ra 16n+1 chia hết cho Đ suy ra 3.(16n+5) chia hết ch Đ
..........24n+7.....................suy ra 2(24n+7)......................
suy ra(48n+15)-(48n+14) CHIA HẾT CHO Đ
suy ra 1 chia hết choĐ và Đ=1
VÌ 16N+5\24N+7 CO ƯC =1suy ra là p\s toi gian
chào tham khảo nhé :
Gọi d là ước chung lớn nhất của 12n+4 và 16n+5 ( d \(\in\)N*)
Khi đó : \(\hept{\begin{cases}12n+4⋮d\\16n+5⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}4.\left(12n+4\right)⋮d\\3.\left(16n+5\right)⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}48n+16⋮d\\48n+15⋮d\end{cases}}\)
<=> \(\left(48n+16\right)-\left(48n+15\right)⋮d\)
<=> \(1⋮d\)
Mà d \(\in\)N* => d = 1
=> 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau
Vậy 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau
16n <1284
=> n E { 0;1;2}
giải thik cho dễ hiểu đi