K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

5:\(\frac{2}{5}\)=37.5

3 tháng 3 2016

30 ung ho nha

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 

nhầm đề , đây là bài đúng ! ^.^

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 
2/ Đặt Q(x)=P(x)-(x+1) 
Q(1999)=P(1999)-(1999+1)=2000-2000=0 
Q(2000)=P(2000)-(2000+1)=2001-2001=0 
=>x-1999,x-2000 là các nghiệm của Q(x) 
Đặt Q(x)=(x-1999)(x-2000).g(x) 
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1) 
=>Q(x) =(x-1999)(x-2000).( ax+b) 
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1) 
P(2001)=(2001-1999)(2001-2000) 
(a.2001+b)+(2001+1) 
=2(2001a+b)+2002 
=4002a+2b+2002 
P(1998)= (1998-1999)(1998-2000)(a.1998+b) 
+(1998+1) 
=2(a.1998+b)+1999 
=3996a+2b+1999 
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999 
=6a+3 
=3(a+2) 
Do a thuộc Z,a khác -1 
=>a+2 thuộc Z,a+2 khác 1 
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3 
=>3(a+2) là hợp số 
=> P(2001) - P(1998) là hợp số

10 tháng 8 2018

ai cần

10 tháng 8 2018

mai cần

8 tháng 2 2017

minh tra loi ban co ko

17 tháng 2 2018

bó tay chấm com .v n

26 tháng 12 2015

Để phân số này tối giản thì 2 số này phải nguyên tố cùng nhau.

Gọi ƯCLN(12n + 1; 30n + 2) là d

=> 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d

     30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d

Từ 2 điều trên => 5(12n + 1) - 2(30n + 2) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> (60n - 60n) + (5 - 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

hay phân số 12n + 1/30n + 2 là phân số tối giản

Vậy...

26 tháng 12 2015

Gọi d thuộc ƯC (12n+1, 30n+2). Ta có: 
12n+1 chia hết cho d, 30n+2 chia hết cho d 
=> 12n+1 - 30n+2 chia hết cho d 
=> 5(12n+1) - 2(30n+2) chia hết cho d 
=> 60n+5 - 60n+4 chia hết cho d 
=> (60n - 60n) + (5-4) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 hoặc d = -1 
Vậy phân số trên là phân số tối giản. 

21 tháng 3 2019

gọi ƯCLN (16n+3,12n+2) là d

16n+3 chia hết cho d => 48n+9 chia hết cho d 

12n+2 chia hết cho d => 48n + 8 chia hết cho d

=> 48n+9 -  48n + 8  chia hết cho d

=> 1  chia hết cho d

=> d\(\in\){-1;1}

=> \(\frac{16n+3}{12n+2}\)tối giản

21 tháng 3 2019

Để A là phân số tối giãn thì \(16n+3⋮12n+2\)(đặt phân số đó là A nhé)

\(=>16n+3⋮12n+2\)

\(=>48n+9⋮48n+8\)

\(=>48n+9-48n-8⋮48n+8\)

\(=>4⋮12n+2\)