Cho tứ giác ABCD có M là trung điểm của AB, N là trung điểm của CD, P là điểm trên BC, Q là điểm trên AD (QA khác QD). Biết MPNQ là hình bình hành. Chứng minh: BC song song với AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy C' thuộc BC sao cho P là trung điểm CC'. Tương tự lấy A' trên AD sao cho Q là trung điểm AA'.
Xét tam giác CC'D có PN là đường trung bình nên PN song song và bằng một nửa C'D (1).
Tương tự xét tam giác ABA' có MQ là đường trung bình nên MQ song song và bằng một nửa BA' (2).
Mà giả thiết lai jcho MNPQ là hình bình hành nên PN // MQ và PN = MQ (3).
Từ (1), (2), (3) ta suy ra C'D // BA' và C'D = BA'.
Vậy thì tứ giác C'BAD là hình bình hành hay C'B // DA', hay BC // AD.
Câu hỏi của Lê Chí Cường - Toán lớp 8 - Học toán với OnlineMath Em xem bài làm ở link này nhé!
a, Vì O là trung điểm EF
MN qua O //AB//CD
=>M là trung điểm AD, N là TD BC
Tứ giác MPNQ luôn là hình bình hành.