4/11x13 + 4/13x15 + 4/15x17+...........+4/99x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{99}-\frac{4}{101}\)
\(A=4\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=4.\left(\frac{1}{11}-\frac{1}{101}\right)\)
A=4. 90/1111=360/1111
\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Rightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
Đặt S = \(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+....+\frac{20}{53.55}\)
\(=10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)\)
\(=10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=10\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(=10\cdot\frac{4}{55}=\frac{8}{11}\)
Thay A vào đề bài,ta được:
\(x-\frac{8}{11}=\frac{3}{11}\)
\(x=\frac{3}{11}+\frac{8}{11}\)
\(x=1\)
2/11x13+2/13x15+2/15x17+...+2/97x99
=1/11-1/13+1/13-1/15+1/15-1/17+...+1/97-1/99
=1/11-1/99
=8/99
=2/11+2/13-2/13+2/15-2/15+...-2/97+2/98
=2/11+(2/13-2/13+2/15-2/15+...-2/97+2/99)
=2/11+2/99
=20/99
\(\frac{2}{11}\times13+\frac{2}{13}\times15+\frac{2}{15}\times17+........+\frac{2}{97}\times99\)
\(A\times2=\frac{2}{11\times13}+\frac{2}{13\times15}+\frac{2}{15\times17}+........+\frac{2}{97\times99}\)
\(A\times2=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+........+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{11}-\frac{1}{99}\)
\(A=\frac{8}{99}\)
mik ko bt là có đúng hay ko nhưng đúng thì các bạn cho 1 t i c k nha
=4x(\(\frac{1}{11x13}\)+\(\frac{1}{13x15}\)+.......+\(\frac{1}{99x101}\))
=4x(\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\))
4x(\(\frac{1}{11}\)-\(\frac{1}{101}\))
=4x \(\frac{90}{1111}\)
=\(\frac{360}{1111}\)
\(\frac{4}{11\times13}+\frac{4}{13\times15}+\frac{4}{15\times17}+...+\frac{4}{99\times101}\)
\(=\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+\frac{4}{15}-\frac{4}{17}+...+\frac{4}{99}-\frac{4}{101}\)
\(=\frac{4}{11}-\frac{4}{101}\)
\(=\frac{360}{1111}\)