b)Tìm giá trị lớn nhất của biểu thức:
C=-/x+4/+2005
D=90/20-x/-/70+y/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a, A = /x-1/ + / y+3 / - 7
ta có : /x-1/ >_ 0
/y+3/>_ 0
=> /x-1/ + /y+ 3/ >_ 0
=>/x-1/ +/y+3/ - 7 >_ -7
=> A >_ -7
=> Amin =-7
nhớ tích nha bạn
C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 )
= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4
Dấu ''='' xảy ra khi x = -1
Vậy GTLN C là 4 khi x = -1
D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 )
=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 )
= - ( x + 3/2 )^2 + 37/4 =< 37/4
Dấu ''='' xảy ra khi x = -3/2
Vậy GTLN D là 37/4 khi x = -3/2
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
C=-|x+4|+2005
Ta thấy: \(\left|x+4\right|\ge0\)
\(\Rightarrow-\left|x+4\right|\le0\)
\(\Rightarrow-\left|x+4\right|+2005\le0+2005=2005\)
\(\Rightarrow C\le2005\)
Dấu = khi -|x+4|=0 <=> x=-4
Vậy MaxC=2005 khi x=-4
phần b sai đề nhé