Cho 3 số a # b # c. Chứng minh rằng ít nhất một trong 3 số sau đây là số dương:
x = (a + b + c)^2 - 9ab
y = (a + b + c)^2 - 9bc
z = (a + b + c)^2 - 9ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
\(\left(a+b+c\right)^2\ge0\)
giả sử 3 số x,y,x đều là số âm
=> 9ab là số âm
=>ab là số âm
=> a,b khác dấu
giả sử 9bc là số âm
=>bc âm
=>b,c khác dấu
a,b khác dấu
b,c khác dấu
=>a , c cùng dấu
=>9ac dương
=> z là số dương
trong 3 số x,y,x ít nhất có 1 số dương
=>đpcm
arigatou ^^