Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)
bạn sủa lại đề đi: z=(a-b+c)2+8ac
x+y+z=3(a-b+c)2+8ab+8bc-8ac
x+y+z=3(a2+b2+c2-2ab+2ac-2bc)+8ab+8bc-8ac
x+y+z=3a2+b2+3c2+2bc+2ab-2ac
=(a+b)2+(b+c)2+(a-c)2+a2+b2+c2 >0
Vậy.../
Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.
\(\left(a+b+c\right)^2\ge0\)
giả sử 3 số x,y,x đều là số âm
=> 9ab là số âm
=>ab là số âm
=> a,b khác dấu
giả sử 9bc là số âm
=>bc âm
=>b,c khác dấu
a,b khác dấu
b,c khác dấu
=>a , c cùng dấu
=>9ac dương
=> z là số dương
trong 3 số x,y,x ít nhất có 1 số dương
=>đpcm
arigatou ^^