K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

Sao mà khó dữ...Hừm cho nghĩ một lát nha.ha

26 tháng 7 2016

a) Phân tích được x3(x2 - 7)2 – 36x = x(x + 1 )( x - 1 )(x - 3)(x + 2)(x - 2)( x + 3)

b) Theo phần a ta có :

A = n3(n2 - 7)2 - 36n = n(n + 1)(n - 1) (n - 3)(n + 2)(n - 2)(n + 3)

Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có:

- Một bội của 2 nên A chia hết cho 2.

- Một bội của 3 nên A chia hết cho 3.

- Một bội của 5 nên A chia hết cho 5.

- Một bội của 7 nên A chia hết cho 7.

Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A chia hết cho (2; 3; 5;7)

Hay A chia hết cho 210.

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

15 tháng 10 2018

Ta có

A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]

= n(n3 -7n2 -6)( n3 -7n2 +6)

Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)

n3 -7n2 +6 = (n-1)(n-2)(n+3)

Do đó:

A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)

Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp

+Tồn tại một  bội của 5 ⇒ A chia hết cho 5

+Tồn tại một bội của 7 ⇒ A chia hết cho 7

+Tồn tại hai bội của 3 ⇒ A chia hết cho 9

+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho

5.7.9.16 =5040.

+ Qua ví dụ 1 rút ra cách làm như sau:

Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).

1 tháng 6 2021

n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho   4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả

19 tháng 8 2017

Ta có: A=x^2 +6x-7 =>A= (x^2 -x)+(7x-7)=> A= x(x-1) +7(x-1)=>A=(x+7)(x-1)

Ta có: C= x^4 +x^3 +2x^2 -x+3

=> C= (x^4 +x) +(x^3 +1) +2.(x^2 -x+1)

=>C= x(x^3 +1) + (x^3 +1) +2.(x^2 -x+1)

=>C=x(x+1)(x^2-x+1) +(x+1)(x^2-x+1) +2.(x^2-x+1)

=>C=(x^2-x+1)(x^2 +x+x+1+2)

=>C=(x^2 -x+1)(x^2 +2x+3)

ta có: B= \(x^3\left(x^2-7\right)^2-36x\)

 =>B=\(x\left[x^2.\left(x^2-7\right)^2-6^2\right]\)

=>B=\(x\left[x\left(x^2-7\right)-6\right].\left[x\left(x^2-7\right)+6\right]\)

=>B=\(x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)

=>B=\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)

19 tháng 8 2017

2) Ta có: M=n^3 (n^2 -7)^2 -36n

=>M=(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)

Như vậy M là tích của 7 số liên tiếp

=> trong đó có 1 số chia hết cho 2 ; 1 số chia hết cho 3 ; 1 số chia hết cho5 ; 1 số chia hết cho7

Mà 2;3;5;7 nguyên tố cùng nhau nên M \(⋮\)(2.3.5.7) hay M\(⋮\) 210

Vậy với mọi n thuộc N thì M chia hết cho 210

26 tháng 10 2022

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

21 tháng 10 2016

\(x^3\left(x^2-7\right)^2-36x=x^3\left(x^4-14x^2+49\right)-36x\)

=\(x^7-14x^5+49x^3-36x\)

=\(x^7-x^6+x^6-x^5-13x^5+13x^4-13x^4+13x^3+36x^3-36x\)

=\(x^6\left(x-1\right)+x^5\left(x-1\right)-13x^4\left(x-1\right)-13x^3\left(x-1\right)+36x\left(x^2-1\right)\)

=\(x\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)\)

=\(x\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]\)

=\(x\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)\)

đặt x^2 =a (a>=0) thì xét đa thức \(x^4-13x^2+36=a^2-13a+36\)

xét \(\Delta=b^2-4ac=169-4.36=25\)

\(\Delta>0\)→phương trình có 2 nghiệm riêng biệt là \(\left[\begin{array}{nghiempt}a_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{13+5}{2}=9\\a_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{13-5}{2}=4\end{array}\right.\)(t/m a>=0)

vậy bt ban đầu :\(x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)\left(x^2-9\right)\)

=\(\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

25 tháng 2 2018

A = x.[x^2.(x^2-7)^2-36]

   = x.[(x^3-7x)^2-6^2]

   = x.(x^3-7x-6).(x^3-7x+6)

   = x.[(x^3+1)-(7x+7)].[(x^3-x)-(6x-6)]

   = x.(x+1).(x^2-x-7).(x-1).(x^2+x-6)

   = x.(x+1).(x-1).(x-2).(x+3).(x^2-x-7)

Tk mk nha

31 tháng 7 2018

x3(x2−7)2−36x=x3(x4−14x2+49)−36xx3(x2−7)2−36x=x3(x4−14x2+49)−36x

=x7−14x5+49x3−36xx7−14x5+49x3−36x

=x7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36xx7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36x

=x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)

=x(x−1)(x5+x4−13x3−13x2+36x+36)x(x−1)(x5+x4−13x3−13x2+36x+36)

=x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]

=x(x−1)(x+1)(x4−13x2+36)x(x−1)(x+1)(x4−13x2+36)

đặt x^2 =a (a>=0) thì xét đa thức x4−13x2+36=a2−13a+36x4−13x2+36=a2−13a+36

xét Δ=b2−4ac=169−4.36=25Δ=b2−4ac=169−4.36=25

Δ>0Δ>0→phương trình có 2 nghiệm riêng biệt là ⎡⎣a1=−b+Δ√2a=13+52=9a2=−b−Δ√2a=13−52=4[a1=−b+Δ2a=13+52=9a2=−b−Δ2a=13−52=4(t/m a>=0)

vậy bt ban đầu :x(x−1)(x+1)(x2−4)(x2−9)x(x−1)(x+1)(x2−4)(x2−9)

=(x−3)(x−2)(x−1)x(x+1)(x+2)(x+3)