K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

\(\frac{3}{9}\)\(\frac{3}{14}\)\(\frac{3}{14}-\frac{3}{19}+\frac{3}{19}-\frac{3}{24}+...+\frac{3}{5n-1}-\frac{3}{5n-4}=\frac{3}{9}-\frac{3}{5n-4}=\frac{3\left(5n-4\right)}{9\left(5n-4\right)}-\frac{27}{9\left(5n-4\right)}=\frac{15n-12-27}{45n-36}=\frac{15n-39}{45n-36}\)

\(\frac{15n-39}{45n-36};\frac{1}{5}\)

so sanh

\(\frac{\left(15n-39\right)5}{\left(45n-36\right)5}=\frac{75n-195}{225n-180}\)

\(\frac{1}{5}=\frac{45n-36}{5\left(45n-36\right)}=\frac{45n-36}{225n-180}\)

vì 75n-195 < 45n-36 suy ra dãy số trên bé hơn 1/5

6 tháng 2 2023

Nếu \(n=0\) thì \(5^0-1=1-1=0⋮4\)

Nếu \(n=1\) thì \(5^1-1=5-1=4⋮4\)

Nếu \(n\ge2\) thì 2 số tận cùng khi lũy thừa với cơ số 5 luôn là 25.

\(\Rightarrow5^n-1=\left(...25\right)-1=\left(...24\right)⋮4\)(đpcm)

2 Số tận cùng chia hết cho 4 thì số đó chia hết cho 4.

24 tháng 7 2016

mình chỉ ns cách lm thôi nha:

đầu tiên mình chứng minh ráng tổng 2 số tự nhiên: 10,15 không chia hết cho 2

và n nhân n= n bình và bình phương của 1 số luôn chia hết cho 2 nên ...................

sau đó xét n lẻ thì lẻ cộng lẻ ra chẵn nên ......................chia hết cho 2

21 tháng 9 2021

Ta có: \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}\)

\(=\dfrac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)

\(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)

Ta lại có: \(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}\)

\(=\dfrac{n-n+1}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)

\(\Rightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

21 tháng 9 2021

\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(1\right)\)

\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n}+\sqrt{n-1}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

8 tháng 10 2016

tích 3 số trên là 3 số tự nhiên liên tiếp

=> có ít hất 1 số chia hết cho 2 và 1 số chia hết 3

=> 2.3=6

=> tích trên chia hết cho 6

21 tháng 12 2018

Với \(n=1\) thì:

\(4^n+15n-10=4+15-10=9⋮9\)

Giả sử mệnh đề đúng với \(n=k\),nghĩa là \(4^k+15k-10⋮9\),ta sẽ chứng minh mệnh đề cũng đúng với \(n=k+1\)

Thật vậy: Với \(n=k+1\) thì

\(4^n+15n-10=4^{k+1}+15\left(k+1\right)-10\)

\(=4^{k+1}+15k+15-10=4^{k+1}+15k+5\)

\(=4.\left(4^k+15k-10\right)-45k+45\)

\(=4\left(4^{4k}+15k-10\right)-9\left(5k+5\right)⋮9\)

Vậy mệnh đề đúng với mọi \(n\in N\)

21 tháng 12 2018

dòng cuối là 5k-5 nhé

giả sữ 10^n chia hết cho45 dư 10 su ra 10^n-10 chia hết cho 45

Vậy 10^n-n cũng sẽ chia hết cho 9 và 5

ta có: 10^n-10=100000000000.....n ( n số 0)-10=999999999999...........(n-1 số 9)0

xét thấy n-1 số 9 chia hết cho 9 và 10 chia hết cho 5 suy ra 10^n-10 chia hết cho 45

nên 10^n chia hết cho 45 dư 10

tick cho mk nnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaaaa!!!!!!!!!!!!!!!!!!!!!!!1

14 tháng 9 2017
Đặt a=3+sqrt(5);b=3-sqrt(5). Đắt S(n)=a^n+b^n. Bây giờ Bạn chứng minh S(n+2)=(a+b)S(n+1)-ab.S(n)=6S(n+1)-S(n)(1). Xét S(1) là stn, từ 1 =>S(2) cũng là stn, S(3),... S(n)=>đccm
14 tháng 9 2017

cho x;y;z>0 tm \(x^2+y^2+z^2=3xyz.CMR\frac{x^2}{x^4+yz}+\frac{y^2}{Y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)