Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(n⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow n+8=\left(n-1\right)+9⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
Nếu n chia 3 dư 2 \(\Rightarrow n-2⋮3\Rightarrow n+13=\left(n-2\right)+15⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
\(\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\forall n\in N\)
a, n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4
=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1)
vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8
và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8
vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)
b, n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)
=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8 ) (1)
vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6
và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2 => 3(n-1)(n+1)*6
=> n(n-1)(n+1) + 3(n-1)(n+1) *6 (2)
từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48
vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n