Rút gọn: 12.(5^2+1).(5^4+1).(5^8+1)(.5^16+1)
Giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^{32}-1\right)\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{5^{32}-1}{2}\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{32}+1\right)\)
\(2P\)\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=\)\(\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=5^{32}-1\)
\(P=\dfrac{5^{32}-1}{2}\)
\(Q=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Rightarrow2Q=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1\)
\(Q=\frac{5^{32}-1}{2}\)
Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}\right)^2-1^2\)
\(2A=5^{32}-1\)
\(\Rightarrow A=\frac{5^{32}-1}{2}.\)
2p=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
~> p=5^32-1/2
\(2P=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\)
\(p=\frac{5^{32}-1}{2}\)
Theo đầu bài ta có:
\(12\cdot\left(5^2+1\right)\cdot\left(5^4+1\right)\cdot\left(5^8+1\right)\cdot\left(5^{16}+1\right)\)
\(=\frac{24}{2}\cdot\left(5^2+1\right)\cdot\left(5^4+1\right)\cdot\left(5^8+1\right)\cdot\left(5^{16}+1\right)\)
\(=\frac{\left(5^2-1\right)\cdot\left(5^2+1\right)\cdot\left(5^4+1\right)\cdot\left(5^8+1\right)\cdot\left(5^{16}+1\right)}{2}\)
\(=\frac{\left(5^4-1\right)\cdot\left(5^4+1\right)\cdot\left(5^8+1\right)\cdot\left(5^{16}+1\right)}{2}\)
\(=\frac{\left(5^8-1\right)\cdot\left(5^8+1\right)\cdot\left(5^{16}+1\right)}{2}\)
\(=\frac{\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)}{2}\)
\(=\frac{5^{32}-1}{2}\)
2p=24(52+1)(54+1)(58+1)(516+1)2p=24(52+1)(54+1)(58+1)(516+1)
=(52−1)(52+1)(54+1)(58+1)(516+1)=(52−1)(52+1)(54+1)(58+1)(516+1)
=(54−1)(54+1)(58+1)(516+1)=(54−1)(54+1)(58+1)(516+1)
=(58−1)(58+1)(516+1)=(58−1)(58+1)(516+1)
=(516−1)(516+1)=(516−1)(516+1)
=532−1 >p=5322
Đặt \(A=12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1\)
Vậy \(A=\frac{5^{32}-1}{2}\)
= \(\frac{12.\left(5^2+1\right)\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{5^2-1}\)
=\(\frac{12.\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
=\(\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
=\(\frac{\left(5^{16}-1\right)\left(5^{16+1}\right)}{2}\)
=\(\frac{5^{32}-1}{2}\)