Tìm GTNN của P = / x2 - x + 1/ + / x2 - x - 2 /
(// là dấu giá trị tuyệt đối nhak)
GIUPS MINK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left|x^2-x+1\right|+\left|x^2-x-2\right|=\left|x^2-x+1\right|+\left|-x^2+x+2\right|\)\(\ge\left|x^2-x+1-x^2+x+2\right|=3\)
Suy ra P=3 khi : \(\left(x^2-x+1\right)\left(-x^2+x+2\right)\ge0\Leftrightarrow-1\le x\le2\)
Vậy GTNN của P=3 khi x=-1
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
\(x^2-2\left(m-1\right)x+m-5=0\)
Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
Đặt \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)
\(=\left(2m-3\right)^2+15\ge15\)
\(\Rightarrow A\ge\sqrt{15}\)
\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)
Bài 1 :
Ta có \(2n-1⋮n-3\) ( \(n\in Z\))
=> \(2\left(n-3\right)+5⋮n-3\)
=> 5\(⋮n-3\)
=> \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Vậy \(n\in\left\{2;-2;4;8\right\}\)
Bài 1:
Ta có: (2n-1)/(n-3)=(2n-6+5)/(n-3)=2+5/(n-3)
Để 2n-1 chia hết cho n-3 thì 2+5/(n-3) phải thuộc Z mà 2 thuộc Z nên 5/(n-3) phải thuộc Z
Hay n-3 thuộc ước của 5 <=>(n-3) thuộc {-5;-1;1;5}
Có bảng:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Nhận xét | TM | TM | TM | TM |
Vậy ...
Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)
Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)
\(\Leftrightarrow m+1>0\Rightarrow m>-1\)
\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại m thỏa mãn yêu cầu đề bài
Ta có P = |2x - x + 1| + |2x - x - 2|
=> P = |x + 1| + |x - 2| \(\ge\) |x + 1 + x - 2|
=> P \(\ge\) |2x - 1| (1)
Dấu = xảy ra <=>(x + 1) . (x - 2) = 0
<=> \(\left[\begin{array}{nghiempt}x+1=0\\x-2=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-1\\x=2\end{array}\right.\)
Thay x = 2 vào (1) => P = |2.2-1|
=> P = 3
Vậy MinP = 3 <=> x\(\in\) {-1; 2}