K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

Ta có : \(f'\left(x\right)=\frac{2^x\ln2+2^{-x}\ln2}{2}>0\) với mọi \(x\in R\)

\(\Rightarrow y=f\left(x\right)=\frac{2^x-2^{-x}}{2}\) đồng biến trên R

14 tháng 5 2016

Ta có : \(f'\left(x\right)=\left(3^x\ln3\right)\left(x-\sqrt{x^2+1}\right)+3^x\left(1-\frac{x}{\sqrt{x^2+1}}\right)=3^x\left(x-\sqrt{x^2+1}\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)

Mà : \(\begin{cases}\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge x\Rightarrow x-\sqrt{x^2+1}< 0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)

\(\Rightarrow f'\left(x\right)< 0\) với mọi x thuộc R

Vậy hàm số \(y=f\left(x\right)=3^x\left(x-\sqrt{x^2+1}\right)\) nghịch biến trên R

AH
Akai Haruma
Giáo viên
23 tháng 5 2022

Lời giải:

$f'(x)=1-\cos x\geq 0$ với mọi $x\in [0; \frac{\pi}{2}]$. Trong đó $f'(x)=1-\cos x=0$ chỉ xảy ra khi $x=0$ với điều kiện $x\in [0; \frac{\pi}{2}]$ nên hàm số $f(x)$ đồng biến trên $[0; \frac{\pi}{2}]$

14 tháng 6 2021

f(x1)=3x1f(x1)=3x1

f(x2)=3x2f(x2)=3x2

Theo giả thiết, ta có:

x1<x2⇔3.x1<3.x2x1<x2⇔3.x1<3.x2 ( vì 3>03>0 nên chiều bất đẳng thức không đổi)

⇔f(x1)<f(x2)⇔f(x1)<f(x2) (vì f(x1)=3x1;f(x1)=3x1;f(x2)=3x2)f(x2)=3x2)

Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên RR. 

Chú ý:

Ta cũng có thể làm như sau:

Vì x1<x2x1<x2 nên x1−x2<0x1−x2<0

Từ đó: f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0 

Hay f(x1)<f(x2)f(x1)<f(x2) 

Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên R


 

14 tháng 6 2021

Do \(x_1< x_2\Rightarrow3x_1< 3x_2\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Hàm số \(f\)đồng biến trên \(ℝ\)khi :

\(\forall x_1,x_2\inℝ\)\(x_1< x_2\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

=> Hàm số đã cho đồng biến trên \(ℝ\)

31 tháng 5 2017

Hàm số bậc nhất

21 tháng 8 2018

Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)

Giả sử : \(x_1< x_2\)

\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)

\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)

Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)

\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vậy hàm số đồng biến trên \(R\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1-2-3x_2+2}{x_1-x_2}=3\)

Vậy: Hàm số đồng biến trên R

9 tháng 11 2021

Vì 3>0 nên hs đồng biến trên R