Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(f'\left(x\right)=\left(3^x\ln3\right)\left(x-\sqrt{x^2+1}\right)+3^x\left(1-\frac{x}{\sqrt{x^2+1}}\right)=3^x\left(x-\sqrt{x^2+1}\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)
Mà : \(\begin{cases}\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge x\Rightarrow x-\sqrt{x^2+1}< 0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)
\(\Rightarrow f'\left(x\right)< 0\) với mọi x thuộc R
Vậy hàm số \(y=f\left(x\right)=3^x\left(x-\sqrt{x^2+1}\right)\) nghịch biến trên R
Lời giải:
$f'(x)=1-\cos x\geq 0$ với mọi $x\in [0; \frac{\pi}{2}]$. Trong đó $f'(x)=1-\cos x=0$ chỉ xảy ra khi $x=0$ với điều kiện $x\in [0; \frac{\pi}{2}]$ nên hàm số $f(x)$ đồng biến trên $[0; \frac{\pi}{2}]$
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\(g'\left(x\right)=0\Rightarrow x=0\)
Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)
\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)
\(\Rightarrow-m\le-3\Rightarrow m\ge3\)
Ta có : \(f'\left(x\right)=\frac{2^x\ln2+2^{-x}\ln2}{2}>0\) với mọi \(x\in R\)
\(\Rightarrow y=f\left(x\right)=\frac{2^x-2^{-x}}{2}\) đồng biến trên R