\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)\)
Rút gọn biểu thức này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{n^2-1}{n^2}\right)\)
\(=\text{[}\frac{\left(2-1\right)\left(2+1\right)}{2^2}\text{]}.\text{[}\frac{\left(3-1\right)\left(3+1\right)}{3^2}\text{]}.\text{[}\frac{\left(4-1\right)\left(4+1\right)}{4^2}\text{]}...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\left(\frac{1.3}{2^2}\right).\left(\frac{2.4}{3^2}\right).\left(\frac{3.5}{4^2}\right)...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\frac{\text{[}1.2.3...\left(n-1\right)\text{]}.\text{[}3.4.5...\left(n+1\right)\text{]}}{\text{[}2.3.4...n\text{]}.\text{[}2.3.4...n\text{]}}\)
\(=\frac{1}{n}.\frac{n+1}{2}\)
\(=\frac{n+1}{2n}\)
\(B=\left(\frac{3}{5}\right)^2\cdot5^2-\left(2\frac{1}{4}\right)^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=\left(\frac{3}{5}\cdot5\right)^2-\left(\frac{9}{4}:\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=3^2-\left(\frac{9}{4}\cdot\frac{4}{3}\right)^3+\frac{1}{2}\)
\(B=3^2-3^3+\frac{1}{2}=-18+\frac{1}{2}=-\frac{35}{2}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\)
\(=>B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}=\frac{1\cdot2\cdot3}{2\cdot3\cdot4}=\frac{1}{4}\)