Hai đa giác đều cùng nội tiếp trong một đường tròn. Đa giác thứ nhất có 1982 cạnh. Đa giác thứ hai có 2973 cạnh. Tìm số đỉnh chung của 2 đa giác đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 − 12 − 8.12
Vậy kết quả là C 12 3 − 12 − 8.12 C 12 3
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 - 12 - 12 . 8
Vậy kết quả là C 12 3 - 12 - 12 . 8 C 12 3
SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)
Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn
=>Có 12 tam giác
Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác
=>CÓ 8*12=96 tam giác
=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)
Chọn B
Gọi A là biến cố lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C)
Số đường chéo của đa giác đều 20 đỉnh là C 20 2 - 20 = 170. Khi đó, ta có số cách lấy ra 2 đường chéo trong số 170 đường là
Để có hai đường chéo cắt nhau tại một điểm nằm trong đường tròn (C) thì hai đường chéo đó phải là đường chéo của tứ giác có 4 đỉnh là đỉnh của đa giác đều 20 đỉnh. Do đó, số cách lấy ra 2 đường chéo có giao điểm nằm trong đường tròn tâm O là C 20 4 = 4845
Vậy xác suất lấy ra hai đường chéo có giao điểm nằm trong đường tròn (C) là
Đáp án B.
*Đa giác lồi (H) có 22 cạnh nên cũng có 22 đỉnh. Số tam giác có 3 đỉnh là đỉnh của đa giác (H) là C 22 3 = 1540 (tam giác)
Suy ra số phàn tử của không gian mẫu Ω là n ( Ω ) = C 1540 2 .
*Số tam giác của một cạnh là cạnh của đa giác (H) là 22.18 = 396 (tam giác).
Số tam giác có hai cạnh là cạnh của đa giác (H) là 22 (tam giác)
Số tam giác không có cạnh nào là cạnh của đa giác (H) là:
1540 – 396 – 22 = 1122 (tam giác).
Gọi A là biến cố “Hai tam giác được chọn có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H)”
Số phần tử của A là n ( A ) = C 396 1 . C 1122 1 .
*Vậy xác suất cần tìm là
P ( A ) = n ( A ) n ( Ω ) = C 396 1 . C 1122 1 C 1540 2 = 748 1995 ≈ 0,375.
Chọn đáp án A
Trong đa giác đều A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A1 có một điểm Ai đối xứng với Al qua O(Al ≠ Ai) ta dược một đường kính.
Tương tự với A 1 A 2 A 3 . . . A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều A 1 A 2 A 3 . . . A 30
Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.
Chọn đáp án A
Trong đa giác đều A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A 1 có một điểm A I đối xứng với A 1 qua O A 1 ≠ A I ta dược một đường kính.
Tương tự với A 2 , A 3 , . . . , A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều A 1 A 2 A 3 . . . A 30
Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.
Số đỉnh chung bằng số nghiệm chung của hai phương trình :
\(z^{1982}-1=0,z^{2973}-1=0\)
Ứng dụng định lý , số nghiệm chung là :
d=UCLN(1982,2973)=991