Tìm x,y nguyên khi x+y=2 và xy-z2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có hpt \(\int^{x+y=2}_{xy-z^2=1}\) tí nữa giải cho đg bận
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s:
x ≥ y ≥ z
Vì x2 + y2 + z2 = 14 =>
x 2 ≤ 14
⇒ x ≤ √ 14 < 4
Vì x nguyên dương
=> x ∈ { 1; 2; 3}
+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5
Đáp án D
Ta có C 12 1 . C 10 1 = 120
Khi đó C 12 1 . C 10 1 = 120 . Đặt C 12 1 . C 10 1 = 120
Ta luôn có C 12 1 . C 10 1 = 120
C 12 1 . C 10 1 = 120 Suy ra C 12 1 . C 10 1 = 120
Xét hàm số f t = t 2 − 8 t + 3 trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1
Hàm số f(t) liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞
Do đó, giá trị nhỏ nhất của f(t) là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy P min = − 3
a,b, dễ rồi
c, em đặt giả thiết nếu x>hoặc = y lớn hơn hoặc bằng z
sau đó làm bt
d, phân tích
e,phân tiachs dùng pp ghép nhóm thử xem