cho (P) y=x^2 .điểm A thuộc (P) sao cho tiếp tuyến với (P) tại A song song với với đường thẳng y=4x+5 .vậy điểm A có tọa độ là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))
Pt hoành độ giao điểm d và (P):
\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)
d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)
Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)
a, Vì đường thẳng (d) // với đường thẳng y=-4x
=>a=-4 và b\(\ne\) 0
và vì (d) cắt trục hoành tại điểm có hoành độ=-1 nên x=-1 và y=0. Thế vào, ta được
0=-4*(-1)+b
=> b=-4
vậy, hàm số cần tìm là y=-4x-4
b, vì đường thẳng d vuông góc với đường thẳng y=-5x+1 nên
a*(-5)=-1
=> a=1/5
và vì d đi qua điểm A(5;2) nên x=5;y=2. thế vào ta được
2=(1/5)*5+b
=> b= 1
vậy hàm số cần tìm là y=1/5x+1
c, vì d đi qua 2 điểm A(1;2)và B(-2;-7) nên ta sẽ có 2 phương trình như sau
2=a*1+b( thế tọa độ của A vào)
-7=-2*a+b (thế tòa độ B vào)
giải hệ pt ra ta được a=3; b=-1
vậy hàm số cần tìm là y=3x-1
Ta có \(y'=3x^2-6x\)
Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)
Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)
Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)
\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)
Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)
Bài 1:
phần a tự vẽ được rồi nhỉ.
b, Gọi pt đường thẳng AB là y=ax+b
-Thay hoành độ điểm A vào (P) ta được y=1
thay x=-1, y=1 vào ta có: -a+b=1(1)
-Thay hoành độ điểm B vào (P) ta được y=4
thay x=2, y=4 vào ta có: 2a+b=4(2)
Từ (1) và(2) ta có hpt:\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
⇒Pt đường thẳng AB là y=x+2
Tiếp tuyến với (P) tại A có dạng:(d) y=ax+b
Vì (d) song song với y=4x+5 nên: a=4
=>y=4x+b
Phương trình hoành độ giao điểm của (P) và (d) là:
x2=4x+b
<=>x2-4x-b=0
Vì (d) là tiếp tuyến của (P) nên:
\(\Delta=0\),PT có 2 nghiệm kép: \(x_1=x_2=2\)
=>y=4
Vậy A(1;4)
Tiếp tuyến với (P) tại A có dạng:(d) y=ax+b
Vì (d) song song với y=4x+5 nên: a=4
=>y=4x+b
Phương trình hoành độ giao điểm của (P) và (d) là:
x2=4x+b
<=>x2-4x-b=0
Vì (d) là tiếp tuyến của (P) nên:
Δ=0Δ=0,PT có 2 nghiệm kép: x1=x2=2x1=x2=2
=>y=4
Vậy A(1;4)