Cho y= -x3 + 3x2 - 2 .tìm m để y = m(2-x) +2 cắt (c) tại 3 điểm phân biệt A(2;2) ,B,C sao cho tích các hệ số góc tiếp tuyến của (C) tại B , C đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Hoành độ giao điểm là nghiệm của phương trình
x3- 3x2-m+ 2= -mx hay ( x-1) ( x2-2x+ m-2) =0
Hay x=1; x2-2x+m-2=0
+ Đặt nghiệm x2= 1; từ giải thiết bài toán trở thành tìm m để phương trình có 3 nghiệm lập thành cấp số cộng. Khi đó phương trình : x2-2x+m-2 = 0 phải có 2 nghiệm phân biệt (vì theo hệ thức Viet ta có: x1+ x3= 2= 2x2 ).
Vậy khi đó ta cần ∆’ > 0( để phương trình có 2 nghiệm phân biệt )
∆’=1-(m-2)>0 ⇔ m < 3
Chọn C.
Đáp án C
Số giao điểm của đường thẳng y = ( m - 1 ) x và đồ thị hàm số y = x 3 - 3 x 2 + m + 1 là số nghiệm của PT x 3 - 3 x 2 + m + 1 = ( m - 1 ) x ⇔ x 3 - 3 x 2 + x + 1 - m x + m = 0 ⇔ ( x - 1 ) ( x 2 - 2 x - m - 1 ) = 0 để tồn tại ba giao điểm phân biệt thì 1 - 2 - m - 1 ≢ 0 ∆ ' = 1 + m + 1 > 0 ⇔ m ≢ - 2 m > - 2 khi đó tọa độ ba giao điểm là B ( 1 ; m - 1 ) , A ( x 1 ; y 1 ) , C ( x 2 ; y 2 ) hơn nữa x 1 + x 2 2 = 1 y 1 + y 2 2 = ( m - 1 ) x 1 + ( m - 1 ) x 2 2 = ( m - 1 ) ( x 1 + x 2 ) 2 = m - 1
⇒ B là trung điểm AC hay ta có AB=BC
Đáp án A
Xét PT
x 3 − 3 x 2 + 4 = m x + m ⇔ x + 1 x 2 − 4 x + 4 − m = 0 ;
ĐK để PT này có ba ngiệm là m > 0 và m ≠ 9
Khoảng các từ tới đường thẳng y = m x + m là: h = m m 2 + 1 = m m 2 + 1
Gọi tọa độ của
B x 1 ; y 1 , C x 2 ; y 2 ⇒ B C = x 2 − x 1 2 + y 2 − y 1 2 = x 2 − x 1 2 + m 2 x 2 − x 1 2
= m 2 + 1 x 2 − x 1 2 = m 2 + 1 x 2 + x 1 2 − 4 x 1 x 2 = 4 m m 2 + 1
⇒ S O B C = 1 2 h . B C = 1 2 m m 2 + 1 4 m m 2 + 1 =8 ⇒ m = 4
phương trình hoành độ giao điểm
\(-x^3+3x^2-2=m(2-x)+2\Leftrightarrow (x-2)(x^2-x-2-m)=0\)
Vậy \(x_B, x_C\) là nghiệm của phương trình $x^2-x-2-m=0$.
Điều kiện có nghiệm: $\Delta=4m+9>0\Leftrightarrow m>-\dfrac{9}{4}$
Mặt khác, theo Định lý Viet thì \(\begin{cases} x_B+x_C=1\\ x_Bx_C=-2-m \end{cases}\)
Lại có \(y'=-3x^2+6x=3x(2-x)\) nên tích hệ số góc của tiếp tuyến tại B và C là
\(y'(x_B)y'(x_C)=9x_Bx_C(2-x_B)(2-x_C)=9x_Bx_C[4-2(x_B+x_C)+x_Bx_C]\)
Do đó \(y'(x_B)y'(x_C)=9(-2-m)(4-2-2-m)=9(m^2+2m)=9[(m+1)^2-1]\geq -9\)
Vậy giá trị nhỏ nhất của tích hai hệ số góc của tiếp tuyến tại B và C là -9 khi m=-1
=9