Bài 1 : tìm số hữu tỉ x
1, (3 .x + 1/5) . ( x - 1/2 ) = 0
2, ( x - 3/2 ) . (2 .x +1 ) > 0
3, (2 - x ) . ( 4 /5 -x ) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
=> \(\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x+\frac{1}{3}=0\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}x\right)+\left(-\frac{2}{5}+\frac{1}{3}\right)=0\)
=> \(\frac{1}{6}x-\frac{1}{15}=0\Rightarrow\frac{1}{6}x=\frac{1}{15}\Rightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{2}{5}\)
Vậy x = 2/5
b) \(\frac{1}{3}x+\frac{2}{5}\left(x+1\right)=0\)
=> \(\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
=> \(\frac{11}{15}x+\frac{2}{5}=0\Rightarrow\frac{11}{15}x=-\frac{2}{5}\)
=> \(x=\left(-\frac{2}{5}\right):\frac{11}{15}=\left(-\frac{2}{5}\right)\cdot\frac{15}{11}=-\frac{6}{11}\)
Vậy x = -6/11
c) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=-\frac{13}{3}\Rightarrow x=\left(-\frac{13}{3}\right):\frac{4}{3}=\left(-\frac{13}{3}\right)\cdot\frac{3}{4}=-\frac{13}{4}\)
Vậy x = -13/4
d) \(\frac{11}{5}-\left(\frac{7}{9}-x\right)\cdot\frac{3}{8}=\frac{61}{90}+\frac{x}{3}\)
=> \(\frac{11}{5}-\frac{3}{8}\left(\frac{7}{9}-x\right)=\frac{61}{90}+\frac{30x}{90}\)
=> \(\frac{11}{5}-\frac{7}{24}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3x}{8}=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{229+45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{3\left(229+45x\right)}{360}=\frac{4\left(61+30x\right)}{360}\)
=> \(3\left(229+45x\right)=4\left(61+30x\right)\)
=> \(687+135x=244+120x\)
=> \(687+135x-244-120x=0\)
=> \(\left(687-244\right)+\left(135x-120x\right)=0\)
=> \(443+15x=0\)
=> \(15x=-443\Rightarrow x=-\frac{443}{15}\)
Vậy x = -443/15
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
( x - 3/2 ) ( 2x + 1 ) > 0
TH1 : cả 2 thừa số đều lớn hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{3}{2}\\x>-\frac{1}{2}\end{cases}\Rightarrow}x>\frac{3}{2}}\)
TH2 : cả 2 thừa số đều bé hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{3}{2}\\x< -\frac{1}{2}\end{cases}\Rightarrow}x< -\frac{1}{2}}\)
Vậy,..........
1/ a/\(-\frac{7}{18}=\left(-\frac{7}{2}\right)\left(\frac{1}{9}\right)\)
b/\(-\frac{7}{18}=\left(-\frac{7}{9}\right):2\)
2/
a/\(\frac{7}{15}\cdot\left(-\frac{3}{8}-\frac{3}{7}\right)=\frac{7}{15}\cdot\left(-\frac{45}{56}\right)=-\frac{3}{8}\)
b/\(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+-\frac{4}{4}\right):\frac{3}{7}\)
\(=\left(-\frac{7}{20}\right):\frac{3}{7}+\left(-\frac{2}{5}\right):\frac{3}{7}\)
\(=\left(-\frac{49}{60}\right)+\left(-\frac{14}{15}\right)=-\frac{7}{4}\)
c/\(\frac{2}{3}\cdot\left(-\frac{5}{2}\right)+\frac{10}{15}\cdot\left(-\frac{3}{7}\right)-\frac{2}{3}\cdot\left(-\frac{5}{3}\right)\)
\(=\frac{2}{3}\cdot\left(-\frac{5}{2}-\frac{3}{7}+\frac{5}{3}\right)=-\frac{53}{63}\)
3/
\(2-\left(3-x\right)=-\frac{3}{2}\)
\(2-3+x=-\frac{3}{2}\)
\(x=-\frac{3}{2}+3-2=-\frac{1}{2}\)
4/
a/ Ta có 2 trường hợp:
TH1: \(x-3,5=7,5\)
\(x=7,5+3,5=11\)
TH2: \(x-3,5=-7,5\)
\(x=-7,5+3,5=-4\)
b/ Ta có 2 trường hợp:
TH1:\(x-0,4=3,6\)
\(x=4\)
TH2: \(x-0,4=-3,6\)
\(x=-3.2\)
c/ Ta có 2 trường hợp:
TH1:\(x+\frac{4}{5}=\frac{3}{2}\)
\(x=\frac{7}{10}\)
TH2:\(x+\frac{4}{5}=-\frac{3}{2}\)
\(x=-\frac{32}{10}\)
1.
\(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
2.
\(\left(x^2-9\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
3.
\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right).3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
4.
\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
1, (3x + 1/5).(x - 1/2) = 0
<=> (3x + 1/5) = 0 hoặc (x - 1/2) = 0
<=> 3x = -1/5 hoặc x = 1/2
<=> x = -1/15 hoặc x = 1/2