cho p là số nguyên tố lớn hơn 3.c/m (p+1)(p-1) chia hết cho 24?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
ko chắc lắm
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ lẻ. Do đó $p=4k+1$ hoặc $p=4k+3$ với $k$ là số tự nhiên.
Nếu $p=4k+1$ thì $(p-1)(p+13)=4k(4k+14)=8k(2k+7)\vdots 8$
Nếu $p=4k+3$ thì $(p-1)(p+13)=(4k+2)(4k+16)=8(2k+1)(k+4)\vdots 8$
Vậy $(p-1)(p+13)\vdots 8$ với mọi $p$ là số nguyên tố lớn hơn $3$ (1)
Mặt khác:
Vì $p>3, p$ nguyên tố nên $p$ chia $p=3m+1$ hoặc $p=3m+2$ với $m$ tự nhiên.
Nếu $p=3m+1$ thì $p-1=3m\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$
Nếu $p=3m+2$ thì $p+13=3m+15\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$
Vậy $(p-1)(p+13)\vdots 3$ với mọi $p$ nguyên tố > 3 (2)
Từ $(1); (2)$ mà $(3,8)=1$ nên $(p-1)(p+13)\vdots 24$ (đpcm)
Hình như bạn viết đề bài sai hay sao ý, theo ý của mình là: \(\left(p-1\right).\left(p+1\right)⋮24\)
Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => \(\left(p-1\right).\left(p+1\right)⋮24\)\(\left(ĐPCM\right)\)
HT
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ.
=>(p+1) và (p-1) là 2 số chẵn liên tiếp.
=> (p+1).(p-1) chia hết cho 8. (1)
Mặt khác, vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 ; 3k+2 ( đ/k: k thuộc N* )
TH1: Với p=3k+1 => (p+1).(p-1)= (3k+2).3k chia hết cho 3.(vì 3k chia hết cho 3)
TH2: Với p=3k+2 => (p+1).(p-1)= 3.(k+1).(3k-1) chia hết cho 3 (vì 3k chia hết cho 3)
Từ 2 TH trên => (p+1).(p-1) chia hết cho 3 (2)
Từ (1) và (2) => (p+1).(p-1) chia hết cho 8 và chia hết cho 3.
Mà (8,3)=1 => (p+1).(p-1) chia hết cho 8.3=24
=> (p+1).(p-1) chia hết cho 24.
Vậy (p+1).(p-1) chia hết cho 24.
CHÚC BẠN HOK TỐT!!!!