tìm x biết
x^3-6x^2+12x-8=-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(D=\dfrac{5x^2-30x+53}{x^2-6x+10}=\dfrac{5\left(x^2-6x+10\right)+3}{x^2-6x+10}=5+\dfrac{3}{x^2-6x+10}\)
\(=5+\dfrac{3}{\left(x-3\right)^2+1}\)
Ta có: \(\left(x+3\right)^2+1\ge1\Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\le3\)
\(\Rightarrow D\le3+5=8\)
Vậy max D= 8 <=> x=3
Bài 2:
\(8\left(x-3\right)^3+x^3=6x^2-12x+8\)
\(\Leftrightarrow\left[2\left(x-3\right)^3\right]=-x^3+3.2x^2-3.2^2x+2^3\)
\(\Leftrightarrow\left(2x-6\right)^3=\left(2-x\right)^3\)
\(\Leftrightarrow2x-6=2-x\)
\(\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)
Vậy tập nghiệm : \(S=\left\{\dfrac{8}{3}\right\}\)
a) (x-2)3 - 6(x+1)2 - x3 + 12 = 0
<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0
<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0
<=> -12x2+4=0
<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)
vậy pt có 2 nghiệm....
b) x3 - 6x2 + 12x - 8 = 0
<=> (x3-2x2)-(4x2-8x)+(4x+8)=0
<=> (x-2)(x2-4x+4)=(x-2)3=0
=> x=2 là nghiệm
c) 8x3 - 12x2 + 6x - 1 = 0
<=> (2x-1)3=0
<=> x=1/2
a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)
\(\Leftrightarrow-12x^2-2=0\)
\(\Leftrightarrow-2\left(6x^2+1\right)=0\)
\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)
Vậy không có giá trị nào của x thỏa mãn pt
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x=2
c) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(=\frac{1}{2}\)
\(x^3-6x^2+12x-8=-8\\ \Leftrightarrow\left(x-2\right)^3=\left(-2\right)^3\\ \Leftrightarrow x-2=-2\\ \Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt