Cho chóp \(S.ABC,SA\perp\left(ABC\right),\Delta ABC\) vuông cân tại \(A\) , \(SA=AB=a\).Tính góc giữa đường thẳng \(SA\) và mặt phẳng \(SBC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)
\(AB=AC\sqrt{2}=a\sqrt{2}\)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)
\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)
\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)
\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)
b.
Theo cmt, \(BC\perp\left(SAC\right)\)
Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)
\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)
\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ
Ta có : \(\left(SBC\right)\cap\left(ABC\right)=BC\)
Lấy H là TĐ của BC \(\Rightarrow AH\perp BC\)
SA \(\perp\left(ABC\right)\Rightarrow SA\perp AB;AC\)
\(\Delta SAB;\Delta SAC\perp\) tại A có : \(SB=\sqrt{SA^2+AB^2}=\sqrt{SA^2+AC^2}=SC\)
\(\Rightarrow\Delta SBC\) cân tại S . Suy ra : \(SH\perp BC\)
Suy ra : \(\left(\left(SBC\right);\left(ABC\right)\right)=\left(HA;HS\right)=\widehat{SHA}\)
Tính được : AH = \(\dfrac{a\sqrt{3}}{2}\)
\(\Delta SAH\) vuông tại A có : \(tan\widehat{SHA}=\dfrac{SA}{HA}=\dfrac{a\sqrt{3}}{2}:\dfrac{a\sqrt{3}}{2}=1\Rightarrow\widehat{SHA}=45^o\)
Vậy ...
Chọn A.
Gọi I là trung điểm của BC, tam giác ABC vuông cân tại A nên AI ⊥ BC
Có SA ⊥ (ABC) => SA ⊥ BC
Suy ra BC ⊥ (SAI). Suy ra ((SBC);(ABC)) = SIA.
∆ SIA vuông tại A có SA = a, AI = a. Suy ra vuông cân tại A.
Suy ra SIA = 45 °
Chọn đáp án B
Gọi M là trung điểm BC.
Ta có:
Suy ra góc giữa (SBC) và (ABC) bằng góc S M A ^
Tam giác ABC vuông cân tại A:
Xét tam giác SAM vuông tại A có SA = AM = a
=>Tam giác SAM vuông cân tại A => S M A ^ = 45 °
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\)
Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)
\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)
\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)