K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2022

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=AC\sqrt{2}=a\sqrt{2}\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)

\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)

\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)

b.

Theo cmt, \(BC\perp\left(SAC\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)

\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)

\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

NV
11 tháng 4 2022

undefined

a: (SB;(ABC))=(BS;BA)=góc SBA

BA^2+BC^2=AC^2

=>2*BA^2=AC^2

=>AB=BC=a

tan SBA=SA/SB=căn 3

=>góc SBA=60 độ

d: (SB;(BAC))=(BS;BA)=góc SBA=60 độ

e:

CB vuông góc AB

CB vuông góc SA

=>CB vuông góc (SBA)

=>(SC;(SBA))=(SC;SB)=góc BSC

SB=căn SA^2+AB^2=2a

SC=căn SA^2+AC^2=a*căn 5

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

sin BSC=BC/SC=a/a*căn 5=1/căn 5

=>góc BSC\(\simeq27^0\)

NV
21 tháng 7 2021

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)

Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)

13 tháng 11 2019

a: AC vuông góc SB

AC vuông góc BC

=>AC vuông (SBC)

b: BH vuông góc SC

BH vuông góc AC

=>BH vuông góc (SAC)

=>BH vuông góc SA

c: (SA;ABC)=(AS;SB)=góc ASB

\(BA=\sqrt{CB^2+CA^2}=a\sqrt{3}\)

\(SA=\sqrt{SB^2+BA^2}=a\sqrt{7}\)

sin ASB=AB/SA=căn 3/căn 7

=>góc ASB=41 độ

(SA;(SBC))=(SA;SC)=góc ASC

\(SC=\sqrt{\left(2a\right)^2+a^2}=a\sqrt{5}\)

Vì SC^2+CA^2=SA^2

nên ΔSAC vuông tại C 

=>sin ASC=AC/SA=căn 2/căn 7

=>góc ASC=32 độ

26 tháng 12 2018

24 tháng 9 2018

ĐÁP ÁN: B