K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

`0<α<π/2 => {(sinα>0),(cosα>0):}`

`tanα+cotα=2`

Mà `tanα.cotα=1`

`=>` \(\left\{{}\begin{matrix}tan\text{α}=1\\cot\text{α}=1\end{matrix}\right.\)

`=> α=π/4`

`=> sinα=cosα=\sqrt2/2`

a:

2: pi/2<a<pi

=>sin a>0 và cosa<0

tan a=-2

1+tan^2a=1/cos^2a=1+4=5

=>cos^2a=1/5

=>\(cosa=-\dfrac{1}{\sqrt{5}}\)

\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)

cot a=1/tan a=-1/2

3: pi<a<3/2pi

=>cosa<0; sin a<0

1+cot^2a=1/sin^2a

=>1/sin^2a=1+9=10

=>sin^2a=1/10

=>\(sina=-\dfrac{1}{\sqrt{10}}\)

\(cosa=-\dfrac{3}{\sqrt{10}}\)

tan a=1:cota=1/3

b;

tan x=-2

=>sin x=-2*cosx

\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)

\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)

2: tan x=-2 

=>sin x=-2*cosx

\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)

sin a=3/5

=>cos a=4/5

tan a=3/5:4/5=3/4; cot a=1:3/4=4/3

M=(4/3+3/4):(4/3-3/4)=25/7

18 tháng 5 2017

Ta có:
\(\dfrac{cot\alpha-tan\alpha}{cot\alpha+tan\alpha}=\dfrac{cot\alpha.cot\alpha-cot\alpha tan\alpha}{cot\alpha.cot\alpha+cot\alpha tan\alpha}=\dfrac{cot^2\alpha-1}{cot^2\alpha+1}\)
\(=\dfrac{\dfrac{1}{sin^2\alpha}-2}{\dfrac{1}{sin^2\alpha}}=1-2sin^2\alpha=1-2\left(\dfrac{2}{3}\right)^2=\dfrac{1}{9}\).

21 tháng 10 2021

A

21 tháng 10 2021

Chọn A

21 tháng 4 2017

a)\(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\sin^2\alpha=1-\cos^2\alpha\)

\(\Rightarrow1-2^2=-3\) \(\Rightarrow\cos=-\sqrt{3}\left(0< \alpha< \dfrac{\pi}{2}\right)\)

b) \(\tan\alpha\times\cot\alpha=1\Rightarrow\tan\alpha=\dfrac{1}{\cot\alpha}\Rightarrow\tan=\dfrac{1}{4}\)

11 tháng 5 2017

a)Do \(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
\(cos\alpha=2sin\alpha\)(1)
Nếu \(sin\alpha=0\Rightarrow cos\alpha\) (vô lý).
Vì vậy \(sin\alpha\ne0\) . Từ (1) \(\Rightarrow\dfrac{cos\alpha}{sin\alpha}=2\)\(\Leftrightarrow cot\alpha=2\).
Suy ra: \(tan\alpha=\dfrac{1}{2}\).
\(sin\alpha=\sqrt{\dfrac{1}{1+cot^2\alpha}}=\dfrac{1}{\sqrt{3}}\).
\(cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{\dfrac{2}{3}}\).

26 tháng 10 2019

\(\left(\tan\alpha;\cot\alpha\right)=\left(a;b\right)\) cho gọn, trong đó \(b=\frac{1}{a}\)

\(B=a+b+\frac{4}{a+b}-\frac{3}{a+b}\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}-\frac{3}{a+\frac{1}{a}}\ge4-\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(\tan\alpha=\cot\alpha=1\)