Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:
\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)
\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)
b)
\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)
\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)
\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)
\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)
\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)
Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)
c)
\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)
Do đó:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
Ta có:
\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)
Dùng cái này làm được hết mấy câu đó.
nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .
a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)
a)
\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) mình chưa rõ đề nha