Cho tam giacs ABC, M,N lần lượt là trung điểm của AB,AC. Từ c kẻ đường thẳng song song với AB cắt MN tại D .
Chứng minh
a) Tam giác AMN=CND
b) MN//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
Đường thẳng qua A, song song với BC thì cắt AC tại A luôn rồi chứ cắt tại E làm sao được bạn?
a: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC