Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNQ va ΔQBM có
góc QMN=goc MQB
QM chung
góc MQN=góc QMB
=>ΔMNQ=ΔQBM
b: Xét tứ giác MNQB có
MN//QB
MB//NQ
=>MNQB là hình bình hành
=>NQ=MB=AM
c: Xét ΔABC có
M là trung điểm của AB
MN//BC
=>N là trug điểm của AC
a) Xét ΔNAB có
I\(\in\)NI(gt)
M\(\in\)NB(gt)
IM//AB(gt)
Do đó: \(\dfrac{NI}{AI}=\dfrac{NM}{BM}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{NI}{AI}=1\)
\(\Leftrightarrow NI=AI\)
mà A,I,N thẳng hàng(gt)
nên I là trung điểm của AN(Đpcm)
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
Hình: