hơi nhìu 1 tí ạ:))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: (3,0đ) Cho đường tròn (O; R), lấy điểm M nằm ngoài đường tròn (O; R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O; R) và góc AMB nhọn ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O; R) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K ( khác A).1. Chứng minh: tứ giác NHBI nội tiếp.2. Chứng minh: tam giác NHI đồng dạng với tam giác NIK.3. Gọi C là giao điểm của NB và HI, D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.
B1. phân a tui ko bt nha :>
\(B=\frac{2^{13}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{13}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}\)
\(=\frac{2^{13}\cdot3^8}{2^6\cdot3^6\cdot2^9}\)
\(=\frac{2^{13}\cdot3^8}{2^{15}\cdot3^6}\)
\(=\frac{1\cdot3^2}{2^2\cdot1}\)
\(=\frac{1\cdot9}{4\cdot1}\)
\(=\frac{9}{4}\)
1 B
2 B
3 D
4 D
5 A
6 C
7 C
8 C
9 A
10 A
11 C
13 A
14 A
15 B
16 C
17 B
18 D
19 C
20 D
21 D
22 C
23 A
24 B
25 A