Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 tuần nữa có nhé bạn
1 tuần nữa có nhé bạn
1 tuần nữa có nhé bạn
Cs này sợ nó khác. Các dạng bài này Milk ôn hồi tr vào cấp 3 nhưng h vẫn còn giữ lại.
Kiến trúc dạng đề ôn như vầy:
DẠNG I : Rút gọn biểu thức
VD:
A=.......
Sau đó thường sẽ pải thục hiện:
+Rút gọn biểu thức đó
+Chứng minh 0< C<1
+Tính giá trị của x=...
+..
DẠNG II: Giải phương trình-Hệ Phương trình
Trong dạng này thường giải các bài toán về Giải pương trình, hệ phương trình và bất phương trình.\
Chúc hc tốt!
Có j sai cho xl
~LucMilk~
Bạn kết bạn với mình đi. Sau đó mình gửi cho. Nhưng hãy L I K E cho mình trước được không bạn ?
Mk thi rồi nek,dể lắm bạn ( tôi thick hình học nhất ý)
Bạn lên Vndoc.vn tham khảo nhé
Ko biết trước đề đc đâu
Hok tốt
tth giờ chuyển sang hình rồi à :))
Câu 2:
Kẻ đường cao AG, BE, CF của tam giác ABC.
Dễ thấy tứ giác HKMG, HECG nội tiếp.
Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.
Tương tự tứ giác KFCM nội tiếp.
Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.
Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.
b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).
Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).
c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).
Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.
Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).
Do đó (ABC) và (LXM) tiếp xúc với nhau.
Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.
Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.
Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.
Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.
Câu 1 :
a Ta có \(\Lambda CHE\), \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\) Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp
b Từ câu a ta có: tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH)
\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)
c Gọi giao điểm của BM với AC là K; CN với AB là J
Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)
\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)
Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)
Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC
\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy
Chúc anh/chị học tốt
Bài 4: (3,0đ) Cho đường tròn (O; R), lấy điểm M nằm ngoài đường tròn (O; R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O; R) và góc AMB nhọn ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O; R) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K ( khác A).1. Chứng minh: tứ giác NHBI nội tiếp.2. Chứng minh: tam giác NHI đồng dạng với tam giác NIK.3. Gọi C là giao điểm của NB và HI, D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.