Tam giác ABC có AB = 8, AC=17, BC=15. Tam giác đó có phải tam giác vuông không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\) có
AC2 = 172 = 289
AB2 + BC2 = 82 + 152
= 64 + 225
= 289
=> AC2 = AB2 + BC2
Nên \(\Delta ABC\) vuông tại B ( định lý Pi-ta-go đảo )
Lời giải của bạn Tâm sai,sửa lại như sau:
Ta có \(AB^2+BC^2=8^2+15^2=64+225=289\)
Và \(AC^2=17^2=289\)
Do đó \(AC^2=AB^2+BC^2\)
Vậy tam giác ABC là tam giác vuông tại B.
bạn Tâm hay An vậy ???? mình k sai
a) Tam giác ABC vuông tại B
b) Tam giác DEF vuông tại F
c) Tam giác MNP không vuông
\(TC:\)
\(BC^2=15^2=225\)
\(AB^2+AC^2=9^2+12^2=255\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\perp A\)
Vì AB,AC,BC tỉ lệ với 9;12;15 nên \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)
Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)
nên \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)
Vì \(\left(15k\right)^2=\left(9k\right)^2+\left(12k\right)^2\)
nên \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có các cạnh AB; AC; BC tỉ lệ với 9; 12 và 15
⇒ \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)
Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)
⇒ \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)
Ta có:
\(AB^2+AC^2=BC^2\)
\(\left(9k\right)^2+\left(12k\right)^2=\left(15k\right)^2\)
\(81k^2+144k^2=225k^2\)
\(225k^2=225k^2\)
Áp dụng định lý Pytago đảo
⇒ Tam giác ABC vuông tại A
Đặt AB/9=AC/12=BC/15=k
=>AB=9k; AC=12k; BC=15k
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có: \(\dfrac{AB}{5}=\dfrac{BC}{12}=\dfrac{AC}{13}=k\)
\(\Rightarrow AB=5k,BC=12k,AC=13k\)
Mà: Cạnh có độ dài dài nhất chính là cạnh huyền:
Vậy \(\Rightarrow AC=13k\) là cạnh huyền
\(\Rightarrow AC^2=AB^2+BC^2\)
Hay: \(\left(13k\right)^2=\left(5k\right)^2+12k^2\)
\(\Leftrightarrow169k^2=25k^2+144k^2=169k^2\) (đúng)
Vậy tam giác là tam giác vuông tại B
theo py-ta-go đảo ta có AC2 = 172 = 289
AB2 + BC2 = 82 + 152 = 289
=> AC2 = AB2 + BC2
=> TAM GIÁC ABC LÀ TAM GIÁC VUÔNG