K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 7 2021

\(x+y=xy\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)

Mà \(x,y\)nguyên nên ta có bảng sau: 

x-11-1
y-11-1
x20
y20

Thử lại không có trường hợp nào thỏa mãn. 

  \(3xy-2y+6x=0\)

\(\Leftrightarrow3xy+6x-2y-4+4=0\)

\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)

Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)

Ta có bảng sau: 

  y+2      -1     4       -4        1
    y       -3      2       -6        -1
 3x-2        4      -1        1        -4
   3x        6        1        3        -2
   x        2    \(\dfrac{1}{3}\)(loại)        1  \(\dfrac{-2}{3}\)(loại)

 

TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)

TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\) 

Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\) 

       \(x+y=-5\) khi \(y=-6;x=1\)

 

Giải:

Ta có:

\(3xy-2y+6x=0\) 

\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\) 

\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta có bảng giá trị:

3x-2-4-2-1124
y+2124-4-2-1
x\(\dfrac{-2}{3}\) (loại)0 (t/m)\(\dfrac{1}{3}\) (loại)1 (t/m)\(\dfrac{4}{3}\) (loại)2 (t/m)
y-102-6-4-3

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\) 

\(\left(+\right)TH1:x+y=0+0=0\) 

\(\left(+\right)TH2:x+y=1+-6=-5\) 

\(\left(+\right)TH3:x+y=2+-3=-1\) 

Chúc bạn học tốt!

Ta có: \(x+y+z=0\)

nên \(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Ta có: \(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}\)

\(=\dfrac{-z}{y}\cdot\dfrac{-x}{z}\cdot\dfrac{-y}{x}\)

\(=\dfrac{-\left(x\cdot y\cdot z\right)}{x\cdot y\cdot z}=-1\)

\(\dfrac{x}{3}-\dfrac{1}{y+1}=\dfrac{1}{6}\)

=>\(\dfrac{xy+x-3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>\(2\left(xy+x-3\right)=1\)

=>2xy+2x-6=1

=>2xy+2x=7

=>2x(y+1)=7

=>x(y+1)=7/2

mà x,y nguyên

nên \(\left(x,y\right)\in\varnothing\)

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

8 tháng 9 2021

\(\dfrac{x}{3}=x+y=20\Rightarrow x=60\Rightarrow60+y=20\Rightarrow y=-40\)

8 tháng 9 2021

Ta có:

\(\dfrac{x}{3}=20\)

\(\Rightarrow\)\(x=60\)

Lại có:

\(x+y=20\)

\(\Rightarrow\)\(y=20-60\)

\(\Rightarrow\)\(y=-40\)

Vây x = 60 và y = - 40

\(\Leftrightarrow xy=63\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;63\right);\left(3;21\right);\left(7;9\right);\left(-63;-1\right);\left(-21;-3\right);\left(-9;-7\right)\right\}\)