Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xy-2y+6x=0\)
\(\Leftrightarrow3xy+6x-2y-4+4=0\)
\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)
Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)
Ta có bảng sau:
y+2 | -1 | 4 | -4 | 1 |
y | -3 | 2 | -6 | -1 |
3x-2 | 4 | -1 | 1 | -4 |
3x | 6 | 1 | 3 | -2 |
x | 2 | \(\dfrac{1}{3}\)(loại) | 1 | \(\dfrac{-2}{3}\)(loại) |
TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)
TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\)
Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\)
\(x+y=-5\) khi \(y=-6;x=1\)
Giải:
Ta có:
\(3xy-2y+6x=0\)
\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\)
\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng giá trị:
3x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
y+2 | 1 | 2 | 4 | -4 | -2 | -1 |
x | \(\dfrac{-2}{3}\) (loại) | 0 (t/m) | \(\dfrac{1}{3}\) (loại) | 1 (t/m) | \(\dfrac{4}{3}\) (loại) | 2 (t/m) |
y | -1 | 0 | 2 | -6 | -4 | -3 |
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\)
\(\left(+\right)TH1:x+y=0+0=0\)
\(\left(+\right)TH2:x+y=1+-6=-5\)
\(\left(+\right)TH3:x+y=2+-3=-1\)
Chúc bạn học tốt!
Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$
$\frac{6+xy}{3x}=\frac{1}{6}$
$\frac{2(6+xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(6+xy)=x$
$\Rightarrow 12+2xy-x=0$
$12=x-2xy$
$12=x(1-2y)$
$\Rightarrow 1-2y$ là ước của $12$
Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$
$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$
$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)
\(\frac{2}{x}+\frac{y}{3}=\frac{1}{6}\) => \(\frac{y}{3}=\frac{1}{6}-\frac{2}{x}\) => \(\frac{y}{3}=\frac{x-12}{6x}\) => \(2y=\frac{x-12}{x}=1-\frac{12}{x}\)
Để 2y nguyên => x=(-12, -6,-4,-3,-2,-1,1,2,3,4,6,12) => 2y=(2, 3, 4, 5, 7, 13, -11,-5, -3, -2, -1, 0)
Do 2y chẵn => Chon được 2y=(2,4,-2,0) => y=(1,2,-1,0)
Các cặp (x,y) thỏa mãn là: (-12, 1); (-4,4); (4,-1); (12,0)
Ta có \(\left(2x+3\right)\left(y-1\right)=-6=-3.2=-2.3=-1.6=-6.1\)
\(TH1\hept{\begin{cases}2x+3=3\\y-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
\(TH2\hept{\begin{cases}2x+3=-2\\y-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=4\end{cases}}}\)(loại)
\(TH3\hept{\begin{cases}2x+3=-3\\y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=3\end{cases}}}\)
Tương tự như vậy giải các TH còn lại nha!
#Học tốt
\(\dfrac{x}{3}-\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x-3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(2\left(xy+x-3\right)=1\)
=>2xy+2x-6=1
=>2xy+2x=7
=>2x(y+1)=7
=>x(y+1)=7/2
mà x,y nguyên
nên \(\left(x,y\right)\in\varnothing\)