Cho tam giác ABC nội tiếp đường tròn (O) có trung điểm các cạnh AC, AB lần lượt tại M và N. Đường thẳng đi qua A lần lượt vuông góc với AC, AB cắt đường thẳng BC tại X và Y. XM cắt AB tại P, YN cắt AC tại Q. Chứng minh rằng O, P, Q thẳng hàng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 2 2023
xét tam giác MDC và tam giác MBA có
góc M chung
góc MCD = góc MAB (chắn BD)
=> đồng dạng => MD.MA= MB.MC
xét tứ giác AEHF có
góc E+F =180 mà 2 góc ở vị trí đối => nội tiếp
=> góc FEA = góc HAF chắn HF
mà AHF = BCF ( 2 góc phụ nhau )
=> góc BCF = góc AEF
=> tứ giác BEFC nội tiếp
=> ME.MF= MB.MC
=> ME.MF = MD.MA
=> tứ giác AEFD nội tiếp
mà tứ giác AEHF nội tiếp
= > 5 điểm A,E,F,H,D cùng thuộc 1 đường tròn
=> góc ADH = 90
xét (o) có ADK = 90
=> D,H,K thẳng hàng (đpcm )
Gọi MO,NO cắt đường thẳng BC lần lượt tại R,S.
Xét \(\Delta XAC\): M là trung điểm cạnh AC, MO || AX vì cùng vuông góc AC, suy ra MO đi qua trung điểm XC
Ta có R là trung điểm XC, MN || XC vì MN là đường trung bình \(\Delta ABC\), suy ra \(M\left(CXRN\right)=-1\)
Tương tự thì \(N\left(YBSM\right)=-1\)
Do đó \(M\left(CXRN\right)=N\left(YBSM\right)\) hay \(M\left(QPON\right)=N\left(QPOM\right)\)
Suy ra P,O,Q thẳng hàng.