K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 2 2023
xét tam giác MDC và tam giác MBA có
góc M chung
góc MCD = góc MAB (chắn BD)
=> đồng dạng => MD.MA= MB.MC
xét tứ giác AEHF có
góc E+F =180 mà 2 góc ở vị trí đối => nội tiếp
=> góc FEA = góc HAF chắn HF
mà AHF = BCF ( 2 góc phụ nhau )
=> góc BCF = góc AEF
=> tứ giác BEFC nội tiếp
=> ME.MF= MB.MC
=> ME.MF = MD.MA
=> tứ giác AEFD nội tiếp
mà tứ giác AEHF nội tiếp
= > 5 điểm A,E,F,H,D cùng thuộc 1 đường tròn
=> góc ADH = 90
xét (o) có ADK = 90
=> D,H,K thẳng hàng (đpcm )
Gọi MO,NO cắt đường thẳng BC lần lượt tại R,S.
Xét \(\Delta XAC\): M là trung điểm cạnh AC, MO || AX vì cùng vuông góc AC, suy ra MO đi qua trung điểm XC
Ta có R là trung điểm XC, MN || XC vì MN là đường trung bình \(\Delta ABC\), suy ra \(M\left(CXRN\right)=-1\)
Tương tự thì \(N\left(YBSM\right)=-1\)
Do đó \(M\left(CXRN\right)=N\left(YBSM\right)\) hay \(M\left(QPON\right)=N\left(QPOM\right)\)
Suy ra P,O,Q thẳng hàng.