Cho tứ giác ABCD có: Góc A bằng góc D bằng 90 độ, góc C bằng 40 độ.AB bằng 4cm,AD bằng 3cm.Tính diện tích tứ giác ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông
Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.
Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40
Ta lại có AB= DH =4 cm nên CD = DH+HC 4+ 3/ tan 40
Vậy diện tích tứ giác ABCD = (AB+CD).BH/2
Kẻ đường chéo AC của tứ giác ABCD. Mình xin phép không vẽ hình nhé.
Vì các tam giác ABC, ADC lần lượt là các tam giác vuông tại B và D nên theo định lí Pi-ta-go ta có thể dễ dàng suy ra:
- \(AB^2+BC^2=AC^2\)
- \(AD^2+DC^2=AC^2\)
Từ đây, vì \(AB<AD \Rightarrow AB^2<AD^2 \Rightarrow AC^2-AB^2>AC^2-AD^2 \Rightarrow BC^2>CD^2 \iff BC>CD (đpcm)\)
Ta có: góc B- góc A=200 <=> Góc B= góc A+200 (1) ; góc C= 3 góc A ( giả thiết) (2) ; góc D- góc C=200 <=> góc D= 3 góc A+200 (theo(2))
Mà : góc A+ góc B+ góc C+ góc D=3600 (*). Thay (1);(2);(3) vào (*), ta được: Góc A+ góc A+200+3 góc A+3 góc A+200=3600
<=> Góc A= 400 => Các góc còn lại
Gọi số đo góc A là x
thì số đo góc B là: x + 20
số đo góc C là: 3x => số đo góc D là: 3x + 20
Ta có: \(x+\left(x+20\right)+3x+\left(3x+20\right)=180\)
\(\Leftrightarrow\)\(8x=140\)
\(\Leftrightarrow\)\(x=17,5\)
Vậy góc A = 17,50
góc B = 17,50 + 200 = 37,50
góc C = 17,5 . 3 = 52,50
góc D = 52,50 + 200 = 72,50
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan400=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông