Tìm y biết: (viết kết quả với các chữ số tính được trên máy)
\(\sqrt{130307+140307\sqrt{1+y}}=1+\sqrt{130307-140307\sqrt{1+y}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(130307=a;\text{ }140307=b\)
Pt trở thành \(\sqrt{a+b\sqrt{x+1}}=1+\sqrt{a-b\sqrt{x+1}}\)
\(\Leftrightarrow\sqrt{a+b\sqrt{x+1}}-\sqrt{a-b\sqrt{x+1}}=1\)
\(\Leftrightarrow a+b\sqrt{x+1}+a-b\sqrt{x+1}-2\sqrt{\left(a+b\sqrt{x+1}\right)\left(a-b\sqrt{x+1}\right)}=1\)
\(\Leftrightarrow2a-1=2\sqrt{a^2-b^2\left(x+1\right)}\)
\(\Leftrightarrow\left(2a-1\right)^2=4\left[a^2-b^2\left(x+1\right)\right]\)
\(\Leftrightarrow x+1=\frac{\left(2a-1\right)^2-4a^2}{-4b^2}\)
\(\Leftrightarrow x=\frac{4a^2-\left(2a-1\right)^2}{4b^2}-1\)
Ta có : 1,12(32) = 1,12 + 0,0032
Mà 0,0032 = 32/9990
Nên : 1,12(32) = 28/25 + 32/9990 = 556/495
Nhập vào máy : Sích mak
công thức (2n - 1) ( 2n + 1) x chạy từ 1 đến 15 ok
\(1,=0,9\left|x\right|\\ 2,Sửa:\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3\left|y\right|=-3y\)
\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{zx}+3\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}\sqrt{z}}{\sqrt{zx}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)
\(=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}\)
\(=\dfrac{1+\sqrt{y}+\sqrt{yz}}{1+\sqrt{y}+\sqrt{yz}}=1\)
\(\Rightarrow\sqrt{10P-1}=\sqrt{10.1-1}=\sqrt{9}=3\)
ĐKXĐ : \(\left\{{}\begin{matrix}-130307\le140307\sqrt{1+y}\\130307\ge140307\sqrt{1+y}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{1+y}\le\dfrac{130307}{140307}\) và \(y\ge-1\)
\(PT\Leftrightarrow140307\sqrt{1+y}=-140307\sqrt{1+y}\)
\(\Leftrightarrow\)\(\sqrt{1+y}=0\)
\(\Leftrightarrow y=-1\) ( TM )
Vậy ...
giúp em với mọi người ơi em đang cần gấp lắm ạ TT