K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

ĐKXĐ : \(\left\{{}\begin{matrix}-130307\le140307\sqrt{1+y}\\130307\ge140307\sqrt{1+y}\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{1+y}\le\dfrac{130307}{140307}\)\(y\ge-1\)

\(PT\Leftrightarrow140307\sqrt{1+y}=-140307\sqrt{1+y}\)

\(\Leftrightarrow\)\(\sqrt{1+y}=0\)

\(\Leftrightarrow y=-1\) ( TM )

Vậy ...
 

25 tháng 6 2021

giúp em với mọi người ơi em đang cần gấp lắm ạ TT

1 tháng 8 2015

Đặt \(130307=a;\text{ }140307=b\)

Pt trở thành \(\sqrt{a+b\sqrt{x+1}}=1+\sqrt{a-b\sqrt{x+1}}\)

\(\Leftrightarrow\sqrt{a+b\sqrt{x+1}}-\sqrt{a-b\sqrt{x+1}}=1\)

\(\Leftrightarrow a+b\sqrt{x+1}+a-b\sqrt{x+1}-2\sqrt{\left(a+b\sqrt{x+1}\right)\left(a-b\sqrt{x+1}\right)}=1\)

\(\Leftrightarrow2a-1=2\sqrt{a^2-b^2\left(x+1\right)}\)

\(\Leftrightarrow\left(2a-1\right)^2=4\left[a^2-b^2\left(x+1\right)\right]\)

\(\Leftrightarrow x+1=\frac{\left(2a-1\right)^2-4a^2}{-4b^2}\)

\(\Leftrightarrow x=\frac{4a^2-\left(2a-1\right)^2}{4b^2}-1\)

 

1 tháng 12 2021

\(1,=0,9\left|x\right|\\ 2,Sửa:\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3\left|y\right|=-3y\)

7 tháng 10 2021

P = 1

Sqrt(10P - 1) = sqrt(10.1-1)=3

7 tháng 10 2021

\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{zx}+3\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}\sqrt{z}}{\sqrt{zx}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)

\(=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}\)

\(=\dfrac{1+\sqrt{y}+\sqrt{yz}}{1+\sqrt{y}+\sqrt{yz}}=1\)

\(\Rightarrow\sqrt{10P-1}=\sqrt{10.1-1}=\sqrt{9}=3\)

28 tháng 9 2020

ĐKXĐ: \(-1\le x,y\le1\)

\(\hept{\begin{cases}\sqrt{1-x}+\sqrt{1-y}=\sqrt{2}\left(3\right)\\\sqrt{1+x}+\sqrt{1+y}=\sqrt{6}\end{cases}}\)

<=> \(\hept{\begin{cases}1-x+1-y+2\sqrt{\left(1-x\right)\left(1-y\right)}=2\\1+x+1+y+2\sqrt{\left(1+x\right)\left(1+y\right)}=6\end{cases}}\)

<=> \(\hept{\begin{cases}2\sqrt{1-x-y+xy}=x+y\left(1\right)\\2\sqrt{xy+x+y+1}=4-x-y\left(2\right)\end{cases}}\)

Từ (1) và (2) cộng vế theo vế:

\(2\sqrt{xy-x-y+1}+2\sqrt{xy+x+y+1}=4\)

<=>\(\sqrt{xy-x-y+1}+\sqrt{xy+x+y+1}=2\)(đk: - 1 < = x,y < = 1)

<=> \(xy-x-y+1+xy+x+y+1+2\sqrt{\left(1-x^2\right)\left(1-y^2\right)}=4\)

<=> \(2\sqrt{\left(1-x^2\right)\left(1-y^2\right)}=2-2xy\)

<=> \(\sqrt{x^2y^2-x^2-y^2+1}=1-xy\) (đk: xy < = 1)

<=> \(x^2y^2-x^2-y^2+1=x^2y^2-2xy+1\)

<=> \(x^2+y^2-2xy=0\)

<=> \(\left(x-y\right)^2=0\) <=> \(x=y\)

Thay x = y vào pt (3) => \(2\sqrt{1-x}=\sqrt{2}\) (đk: -1 < = x < = 1)

<=> 4(1 - x) = 2 <=> 4 - 4x = 2 <=> 2 = 4x <=> x = 1/2

=> x = y = 1/2 (tm)

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4