Tìm dư của phép chia
\(x^{19}+x^5-x^{1995}\) : \(x^2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết lại cho dễ nhìn là :
\(1+x+x^{19}+x^{199}+x^{1995}=\left(-x\right)\left(1-x^{1994}\right)-x\left(1-x^{198}\right)-x\left(1-x^{18}\right)+4x+`\)do đó chia cho (1 - x2) dư (4x + 1)
Bài này trên violimpic à?
Quen thế.
\(A\left(x\right)=x^{19}+x^5-x^{1995}\)
\(Q\left(x\right)=x^2-1\)
\(A\left(x\right)=Q\left(x\right)+r\)
\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)
Điều này đúng với mọi x thuộc R
Vậy ta có x=1
=> 1+1+1=0+r
=>r=3
Vậy số dư là 3
Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.
Nó còn là một định lí là định lí Bơzu.
Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.
Lời giải:
Áp dụng tính chất $x^{n}-1\vdots x^m-1$ nếu $n\vdots m$
Cách chứng minh đơn giản. $x^n-1=x^{mk}-1=(x^m)^k-1^k=(x^m-1)[(x^m)^{k-1}+....+1]\vdots x^m-1$
$x^{1992}+x^{198}+x^{19}+x+1=(x^{1992}-1)+(x^{198}-1)+(x^{19}-x)+2x+3$
Áp dụng tính chất đề cập đến ở phần đầu ta có:
$x^{1992}-1\vdots x^2-1$
$x^{198}-1\vdots x^2-1$
$x^{19}-x=x(x^{18}-1)\vdots x^2-1$
Do đó đa thức đã cho chia $x^2-1$ dư $2x+3$
\(A\left(x\right)=x^{19}+x^5+x^{1996}.\)
\(Q\left(x\right)=x^2-1\)
Phép chia có dư
=> \(A\left(x\right)=Q\left(x\right)+r\)
\(x^{19}+x^5-x^{1995}=x^2-1+r\)
Với x=1 => \(1+1-1=1-1+r\)\(\Rightarrow r=1\)
Với x=-1 => \(-1+-1-\left(-1\right)=1-1+r\Rightarrow r=-1\)
Vậy số dư của phép chia đó là 1,-1
đây là định bí Bơ Du nha bạn
Gọi thương của phép chia \(x^{19}+x^5-x^{1995}\) cho \(x^2-1\)là \(A\left(x\right)\)và số dư là \(ax+b\) (do đa thức chia bậc 2)
Ta có: \(f\left(x\right)=x^{19}+x^5-x^{1995}=\left(x^2-1\right)A\left(x\right)+ax+b\)
\(=\left(x-1\right)\left(x+1\right)A\left(x\right)+ax+b\)
Do đa thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=1\)ta được:
\(\hept{\begin{cases}a+b=1\\-a+b=-1\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)
Vậy đa thức dư là \(x\)