K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

\(A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{100}}\)

\(\Leftrightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^{99}}\)

\(\Leftrightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{100}}\right)\)

\(\Leftrightarrow4A=1-\frac{1}{5^{100}}< 1\)

\(\Leftrightarrow A< \frac{1}{4}\left(đpcm\right)\)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

28 tháng 1 2016

ghi ra rồi tui bấm

khôn vừa vừa thôi chớ

21 tháng 2 2023

Ta có : 

`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`

`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`

`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`

`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`

Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`

`=>S<1/16`

9 tháng 7 2019

\(A=1+5+5^2+5^3+...+5^{99}\)

\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)

\(A=6+5^2\cdot6+...+5^{98}\cdot6\)

\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)

\(B=1+5+5^2+5^3+...+5^{100}\)

\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)

\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)

a ⋮ c; b không chia hết cho c => a + b  không chia hết cho c

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

28 tháng 3 2021

Help me pls!khocroi

28 tháng 3 2021

Các dấu * là dấu nhân và các dấu / là dấu phân số.

18 tháng 3 2017

bài 1 :-2009

10 tháng 4 2018

làm cách giải ra giùm

Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

=1

10 tháng 7 2019

Vì B có 101 so hạng nên ta chia B thành 50 nhoms moi nhom co 2 so hạng và thừa 1 so hạng như sau:

\(B=1+\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)=1+5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)=1+5.6+5^3.6+....+5^{99}.6=1+6\left(5+5^3+.....+5^{99}\right)\Rightarrow\text{B chia 6 d}ư\text{ 1}\Rightarrow B⋮̸6\left(đpcm\right)\)

10 tháng 7 2019

Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.

\(B=1+5\left(5+1\right)+5^3\left(5+1\right)+...+5^{99}\left(5+1\right)\)

\(=1+6\left(5+5^3+...+5^{99}\right)\)

Ta có: 1 không chia hết cho 6, \(6\left(5+5^3+...+5^{99}\right)⋮6\)

Do đó B không chia hết cho 6(đpcm)