K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Theo đề bài,ta có :

  A = \((1+3^2)+(3^4+3^6+3^8)+...+(3^{2002}+3^{2004}+3^{2006})\)

  A = \(10+3^4(1+3^2+3^4)+...+3^{2002}(1+3^2+3^4)\)

  A = \(10+3^4\cdot91+...+3^{2002}\cdot91\)

  A = \(10+(3^4+...+3^{2002})\cdot91\)

  A = \(10+7\cdot13(3^4+...+3^{2002})\)

Vậy : \(A=1+3^2+3^4+3^6+...+3^{2004}+3^{2006}⋮13\)dư 10

Chúc bạn học tốt

28 tháng 3 2016

a) A  = 1+32+34+36+...+32006​.

2A= (32+32006)+(34+32004)+.....15988 cặp số..+2

= 32038.15988 + 2

= 512223546
Vậy tổng của A = 512223546
Số dư của A chia cho 113= 512223546 - 113.4532951=83 (Đây là cách tính số dư: Số chia - số bị chia x phần nguyên)

31 tháng 3 2016

Nếu đúng là zậy thì mk biết làm.

A = 3 + 32 + 33 + ...  + 32004

A = (  3 + 32 + 3+ 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )

A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )

A = 3.40 + ... + 32001.40

A = ( 3 + 35 + ...  32001) . 40

=> A chia hết cho 40

31 tháng 3 2016

A = 3 + 32 + 33 +34 + ... + 32004 phải ko?