K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
BO
3
TS
31 tháng 3 2016
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
HV
0
Theo đề bài,ta có :
A = \((1+3^2)+(3^4+3^6+3^8)+...+(3^{2002}+3^{2004}+3^{2006})\)
A = \(10+3^4(1+3^2+3^4)+...+3^{2002}(1+3^2+3^4)\)
A = \(10+3^4\cdot91+...+3^{2002}\cdot91\)
A = \(10+(3^4+...+3^{2002})\cdot91\)
A = \(10+7\cdot13(3^4+...+3^{2002})\)
Vậy : \(A=1+3^2+3^4+3^6+...+3^{2004}+3^{2006}⋮13\)dư 10
Chúc bạn học tốt