K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

a) Bpt luôn đúng với mọi x không âm

b) đk: \(x\le2\)

Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)

Kết hợp với đk, ta được: \(1< x\le2\)

12 tháng 7 2021

a) \(\sqrt{x}< \sqrt{3}\Rightarrow x< 3\Rightarrow0\le x< 3\)

b) \(\sqrt{3x}< 6\Rightarrow3x< 36\Rightarrow x< 12\Rightarrow0\le x< 12\)

c) \(\dfrac{1}{2}\sqrt{5x}< 10\Rightarrow\sqrt{5x}< 20\Rightarrow5x< 400\Rightarrow x< 80\Rightarrow0\le x< 80\)

a) \(0\le x< 3\)

b) \(0\le x< 12\)

7 tháng 9 2021

a, \(\sqrt{3x}< 6\Leftrightarrow3x< 36\Leftrightarrow x< 12\)

\(\Rightarrow0\le x< 12\)

b, \(\sqrt{2x}>1\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)

7 tháng 9 2021

thằng này lm j đây?

10 tháng 8 2021

Làm a, c là tiêu biểu thôi, bài b đơn giản.

a) \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{x-1}-1\)

ĐKXĐ: $x\ge 1.$ Do $VT\ge 0 \Rightarrow VT\ge 0 \to x\ge 2.$

Ta có \(VT=\sqrt{\left[\sqrt{x-1}-1\right]^2}=\left|\sqrt{x-1}-1\right|=VP\) (vì \(\sqrt{x-1}-1=VP\ge0.\))

Vậy phương trình có vô số nghiệm.

c) Ta có:

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)

ĐKXĐ: $x\ge 1.$

Ta có: \(VT=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|=\sqrt{x-1}+1.\)

(vì $\sqrt{x-1}+1>0\forall x\ge 1.$)

Ta có: \(\sqrt{x-1}+1=2\Rightarrow x=2.\) (thỏa mãn)

b: Ta có: \(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow\left|6x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

9 tháng 10 2021

\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

9 tháng 10 2021

a) \(\sqrt{x-3}=5\) (1)

ĐKXĐ: \(x\ge3\)

\(\left(1\right)\Leftrightarrow x-3=25\)

\(\Leftrightarrow x=28\) (nhận)

Vậy \(x=28\)

b) \(\sqrt{2x-1}=\sqrt{3}\)   (2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\left(2\right)\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (nhận)

Vậy \(x=2\)

c) \(\sqrt{1-x}=-1\)

Không tìm được \(x\)\(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))

d) \(\sqrt{\left(x-1\right)^2}=1\)   (3)

ĐKXĐ: Với mọi \(x\in R\)

\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))

* \(x-1=1\)

\(\Leftrightarrow x=2\) (nhận)

* \(1-x=1\)

\(\Leftrightarrow x=0\) (nhận)

Vậy \(x=0;x=2\)

11 tháng 6 2021

a) \(\sqrt{x}< 3\)<=> x<9

b)\(\sqrt{4-x}\) ≤ 2 <=> 4 - x ≤ 4 <=> x≥0

c)\(\sqrt{x+2}=\sqrt{4-x}\) <=> x+2=4-x <=>2x=2<=>x=1 

Vậy x=1

d)\(\sqrt{x^2-1}\)=x-1 <=> x\(^2\)-1=x\(^2\)-2x+1 <=> x\(^2\)-\(x^2\)-2x+1+1=0 <=> 2x=2 <=> x=1

Vậy x=1

11 tháng 6 2021

Câu b á 0≤x≤4 nha

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

26 tháng 10 2021

a: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

26 tháng 10 2021

a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)