Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Ta có: \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{2}{3}\right\}\)
a, \(\left|\sqrt{x-1}+1\right|=2\) \(2\) (dk \(x\ge1\) )
\(\Rightarrow\sqrt{x-1}+1=2\Rightarrow\sqrt{x-1}=1\Rightarrow x=2\)
b. \(\sqrt{x-1}\left(\sqrt{x-2}-1\right)=0\) (dk \(x\ge2\) )
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=3\left(tm\right)\end{cases}}}\)
kl x=3
c,\(\sqrt{x^2-2.x.\frac{1}{4}+\frac{1}{16}}=\frac{1}{4}-x\)
dk \(\frac{1}{4}-x\ge0\Rightarrow x\le\frac{1}{4}\)
\(\Rightarrow\left|x-\frac{1}{4}\right|=\frac{1}{4}-x\Rightarrow\frac{1}{4}-x=\frac{1}{4}-x\)
pt luon dung voi moi \(x\le\frac{1}{4}\)
d,\(\left|6x-1\right|=5\)
th1 \(6x-1\ge0\Rightarrow x\ge\frac{1}{6}\)
\(\Rightarrow6x-1=5\Rightarrow x=1\)
th2 \(6x-1< 0\Rightarrow x< \frac{1}{6}\)
\(\Rightarrow1-6x=5\Rightarrow x=\frac{-2}{3}\)
vay \(x=1,x=\frac{-2}{3}\)
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a) \(\sqrt{x-3}=5\) (1)
ĐKXĐ: \(x\ge3\)
\(\left(1\right)\Leftrightarrow x-3=25\)
\(\Leftrightarrow x=28\) (nhận)
Vậy \(x=28\)
b) \(\sqrt{2x-1}=\sqrt{3}\) (2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(x=2\)
c) \(\sqrt{1-x}=-1\)
Không tìm được \(x\) vì \(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))
d) \(\sqrt{\left(x-1\right)^2}=1\) (3)
ĐKXĐ: Với mọi \(x\in R\)
\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))
* \(x-1=1\)
\(\Leftrightarrow x=2\) (nhận)
* \(1-x=1\)
\(\Leftrightarrow x=0\) (nhận)
Vậy \(x=0;x=2\)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
Làm a, c là tiêu biểu thôi, bài b đơn giản.
a) \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{x-1}-1\)
ĐKXĐ: $x\ge 1.$ Do $VT\ge 0 \Rightarrow VT\ge 0 \to x\ge 2.$
Ta có \(VT=\sqrt{\left[\sqrt{x-1}-1\right]^2}=\left|\sqrt{x-1}-1\right|=VP\) (vì \(\sqrt{x-1}-1=VP\ge0.\))
Vậy phương trình có vô số nghiệm.
c) Ta có:
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)
ĐKXĐ: $x\ge 1.$
Ta có: \(VT=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|=\sqrt{x-1}+1.\)
(vì $\sqrt{x-1}+1>0\forall x\ge 1.$)
Ta có: \(\sqrt{x-1}+1=2\Rightarrow x=2.\) (thỏa mãn)
b: Ta có: \(\sqrt{36x^2-12x+1}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)