Một công nhân dự định làm 150 sp trong một thời gian nhất định. Sau khi làm dc 2h vời năng suất dự kiến, ng đó đã cải tiếng các thao tác nên đã tăng năng suất dc 2 sp mỗi h và vì vậy đã hoàn thành 150 sp sớm hơn dự định 30 phút. Hãy tính năng suất dự kiến ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi năng suất dự định là x (0 < x < 20, sản phẩm/giờ)
Sản phẩm làm được sau 2 giờ là: 2x (sản phẩm)
Số sản phẩm còn lại là 120 – 2x (sản phẩm)
Năng suất sau khi cải tiến là x + 3 (sản phẩm/giờ)
Thời gian làm số sản phẩm còn lại là: 120 - 2 x x + 3 (giờ)
Do sau khi cải tiến người đó hoàn thành kế hoạch sớm hơn dự định 1 giờ 36 phút
Đổi 1 giờ 36 phút bằng 1,6 giờ
Theo bài ra ta có phương trình:
Vậy năng suất dự định của công nhân đó là 12 sản phẩm/giờ
Đáp án C
Gọi số sản phẩm công nhân đó dự định làm trong mỗi giờ là x( x > 0 )
Thời gian công nhân đó dự định làm xong 150 sản phẩm là 150/x (giờ)
2 giờ công nhân đó làm được 2x sản phẩm
Số sản phẩm còn lại là 150 - 2x sản phẩm
Sau 2 giờ công nhân tăng năng suất được 2 sản phẩm
=> Số sản phẩm công nhân đó làm được trong 1 giờ là x+2 sản phẩm
=> Thời gian công nhân làm hết 150 - 2x sản phẩm còn lại là (150 - 2x)/(x+2)
Theo bài ra ta có phương trình :
\(2+\dfrac{150-2x}{x+2}=\dfrac{150}{x}-\dfrac{1}{2}\)( bạn tự giải tiếp )
=> x1 = -30 (ktm) ; x2 = 20 (tm)
Vậy sản phẩm công nhân đó dự định làm trong mỗi giờ là 20 sản phẩm
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
Gọi năng suất ban đầu là x
Theo đề, ta có: 600/x=400/x+200/x+10+1
=>200/x-200/x+10=1
=>200(x+10)-200x=x(x+10)
=>x^2+10x=2000
=>x^2+10x-2000=0
=>x=40
Gọi số sản phẩm công nhân làm trong 1 h là x( x<45)
Vì thực tế mỗi giờ sản xuất thêm 1 sp nên số sp làm trong 1 h thực tế là: x+1
Vì hoàn thành sớm hơn dự định 18 phút và còn làm thêm được 2 sản phẩm nên ta có pt:
\(\dfrac{45}{x}-\dfrac{47}{x+1}=\dfrac{3}{10}\)
⇔x=9(TM)
Vậy trong 1h người đó làm được 9 sp theo dự định
Giải cái phương trình này: \(\frac{150}{x}=2+\frac{150-2x}{x+2}+\frac{1}{2}\)
Là được