K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :

a) M là trung điểm của đoạn thẳng AB 

\(\Rightarrow MA=MB=\frac{1}{2}AB\). Thật vậy : Do M là trung điểm của AB nên theo đĩnh nghĩa ta có  

:\(MA+MB=AB\)VÀ \(MA=MB\)

\(\Rightarrow2MA=2MB=AB\)

\(\Rightarrow MA=MB\frac{1}{2}AB\)

b) Nếu \(MA=MB=\frac{1}{2}AB\Rightarrow\)M là trung điểm của đoạn thằng AB

Từ \(MA=MB=\frac{1}{2}AB\Rightarrow MA+MB=\frac{1}{2}AB+\frac{1}{2}AB=AB\)

Vậy \(MA+MB=AB\)VÀ \(MA=MB\)

Chứng tỏ M là trung điểm đoạn thẳng AB

Bài 2 :

Gọi O là trung điểm chung của AB VÀ CD. Ta có:

Gỉa sử :A và C cùng phía đối với O 

Ta thấy rằng 

\(\hept{\begin{cases}AC=OC-OA\\BD=OD-OB\end{cases}}\)

\(\Leftrightarrow\)\(AC=BD\)

\(\hept{\begin{cases}AD=OA+OD\\BC=OB+OC\end{cases}}\)

\(\Leftrightarrow AD=BC\)

Trường hợp A,C khác phía đối với O chứng minh tương tự

Mk k vẽ được hình xin lỗi bạn nhiều nha!

Chúc bạn học tốt ( -_- )

11 tháng 1 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4 

Bài 9: Cho đoạn thẳng AB = 6 cm. Lấy hai điểm C và D thuộc đoạn AB sao cho AC = BD =2cm. Gọi M là trung điểm của AB.a) Giải thích vì sao M cũng là trung điểm của đoạn thẳng CD.b) Tìm trên hình vẽ những điểm khác cũng là trung điểm của đoạn thẳng.Bài 10: Gọi O là một điểm của đoạn thẳng AB. Xác định vị trí của điểm O để:a) Tổng AB + BO đạt giá trị nhỏ nhấtb) Tổng AB + BO = 2 BOc) Tổng...
Đọc tiếp

Bài 9: Cho đoạn thẳng AB = 6 cm. Lấy hai điểm C và D thuộc đoạn AB sao cho AC = BD =
2cm. Gọi M là trung điểm của AB.
a) Giải thích vì sao M cũng là trung điểm của đoạn thẳng CD.
b) Tìm trên hình vẽ những điểm khác cũng là trung điểm của đoạn thẳng.

Bài 10: Gọi O là một điểm của đoạn thẳng AB. Xác định vị trí của điểm O để:
a) Tổng AB + BO đạt giá trị nhỏ nhất
b) Tổng AB + BO = 2 BO
c) Tổng AB + BO = 3.BO.

Bài 11: Gọi M là trung điểm của đoạn thẳng AB và C là một điểm của đoạn thẳng đó. Cho biết
AB = 6cm; AC = a(cm) (0 < a  6). Tính khoảng cách CM.

Bài 12: Cho đoạn thẳng CD = 5cm.Trên đoạn thẳng này lấy hai điểm I và K sao cho CI = 1cm;
DK= 3cm
a) Điểm K có là trung điểm của đoạn thẳng CD không? vì sao?
b) Chứng tỏ rằng điểm I là trung điểm của CK.

Bài 13: Cho đoạn thẳng AB;điểm O thuộc tia đối của tia AB.Gọi M, N thứ tự là trung điểm của
OA, OB
a) Chứng tỏ OA < OB.
b) Trong ba điểm O, M, N điểm nào nằm giữa hai điểm còn lại?
c) Chứng tỏ rằng độ dài đoạn thẳng MN không phụ thuộc vào vị trí điểm O (O thuộc tia
đối của tia AB)

Bài 14: Cho đoạn thẳng AB = 8cm. Trên tia AB lấy điểm C sao cho AC = 2cm.
a) Tính CB
b) Lấy điểm D thuộc tia đối của tia BC sao cho BD = 4 cm. Tính CD.

Bài 15: Trên tia Ox, lấy hai điểm E và F sao cho OE = 3cm, OF = 6cm.
a) Điểm E có nằm giữa hai điểm O và F không? Vì sao?
b) So sánh OE và EF.
c) Điểm E có là trung điểm của đoạn thẳng OF không? Vì sao?
d) Ta có thể khẳng định OF chỉ có duy nhất một trung điểm hay không? Vì sao?

2
8 tháng 4 2020

câu 9

a) ta có AB=6
=> AM=BM=3 cm
mà MC=AM-MC=3-2=1 cm
      MD=MB-BD=3-2=1 cm
=> MC=MD 
=> M là trung điểm của CD
b) C là trung điểm của AD
    D là trung điểm của BC

8 tháng 4 2020

câu 10

a) AB + BO có giá trị nhỏ nhất khi và chỉ khi <=> O trùng B.

b) AB + BO = 2BO <=> AB = BO <=> O trùng A.

c) AB + BO = 3BO <=> AB = 2BO <=> O là trung điểm của AB.

Chúc bạn học tốt