Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Bài giải
a) Trên đường thẳng xy, ta có: ba điểm A,B,C theo thứ tự
nên điểm B nằm giữa hai điểm A và C
\(\text{⇒AC=AB+BC}\)
hay\(\text{ AC=3+5=8cm(1)}\)
Trên đường thẳng xy, ta có: ba điểm B,C,D theo thứ tự
nên điểm C nằm giữa hai điểm B và D
\(\text{⇒BD+BC+CD}\)
hay \(\text{BD=5+3=8cm(2)}\)
Từ (1) và (2) suy ra \(\text{AC=BD(=8cm)}\)
b) Gọi O là trung điểm của BC
⇒\(BO=CO=\frac{BC}{2}=\frac{5}{2}=2,5cm\)
Trên đường thẳng xy, ta có: ba điểm A,B,O theo thứ tự
nên điểm B nằm giữa hai điểm A và O
\(\text{⇒AO=AB+BO}\)
hay \(\text{AO=3+2,5=5,5cm(3)}\)
Trên đường thẳng xy, ta có: ba điểm O,C,D theo thứ tự
nên điểm C nằm giữa hai điểm O và D
\(\text{⇒OD=OC+CD}\)
hay \(\text{OD=2,5+3=5,5cm(4)}\)
Từ (3) và (4) suy ra \(\text{AO=OD(=5,5cm)(5)}\)
Ta có: \(\text{AD=AB+BC+CD}\)
hay \(\text{AD=3+5+3=11cm}\)
Trên đường thẳng xy, ta có: \(AO< AD\left(5,5cm< 11cm\right)\)
nên điểm O nằm giữa hai điểm A và D(6)
Từ (5) và (6) suy ra O là trung điểm của AD
hay BC và AD có cùng 1 trung điểm là điểm O
chúc bạn học tốt
Đường thẳng a chia mặt phẳng thành 2 nửa mặt phẳng.
Xét các trường hợp :
TH1 : Nếu 4 điểm A,B,C,D cùng thuộc 1 nửa mặt phẳng thì đoạn thẳng a không cắt đoạn thẳng nào.
TH2 : Nếu có 1 điểm (chẳng hạn điểm A thuộc nửa mặt phẳng) thì ba điểm B,C,D thuộc nửa mặt phẳng đối của điểm A thì hì đường thẳng a cắt ba đoạn thẳng AB, AC, AD
TH3 : Nếu có 2 điểm chẳng hạn (A và B) thuộc một nửa mặt phẳng hai điểm kia (C và D) thuộc mỗi mặt phẳng đối thì a cắt bốn đoạn thẳng AC, AD, BC, BD
=>điều phải chứng tỏ.
a). Nếu cả 4 điểm A, B, CD thuộc cùng một nửa mặt phẳng thì a không cắt đoạn thẳng nào.
b). Nếu có 1 điểm ( Chẳng hạn điểm A thuộc nửa mặt phẳng) ba điểm B, C, D thuộc nửa mặt phẳng đối thì đường thẳng a cắt ba đoạn thẳng AB, AC, AD
c). Nếu có 2 điểm chẳng hạn (A và B) thuộc một nửa mặt phẳng hai điểm kia (C và D) thuộc mỗi mặt phẳng đối thì a cắt bốn đoạn thẳng AC, AD, BC, BD
Bài 1 :
a) M là trung điểm của đoạn thẳng AB
\(\Rightarrow MA=MB=\frac{1}{2}AB\). Thật vậy : Do M là trung điểm của AB nên theo đĩnh nghĩa ta có
:\(MA+MB=AB\)VÀ \(MA=MB\)
\(\Rightarrow2MA=2MB=AB\)
\(\Rightarrow MA=MB\frac{1}{2}AB\)
b) Nếu \(MA=MB=\frac{1}{2}AB\Rightarrow\)M là trung điểm của đoạn thằng AB
Từ \(MA=MB=\frac{1}{2}AB\Rightarrow MA+MB=\frac{1}{2}AB+\frac{1}{2}AB=AB\)
Vậy \(MA+MB=AB\)VÀ \(MA=MB\)
Chứng tỏ M là trung điểm đoạn thẳng AB
Bài 2 :
Gọi O là trung điểm chung của AB VÀ CD. Ta có:
Gỉa sử :A và C cùng phía đối với O
Ta thấy rằng
\(\hept{\begin{cases}AC=OC-OA\\BD=OD-OB\end{cases}}\)
\(\Leftrightarrow\)\(AC=BD\)
\(\hept{\begin{cases}AD=OA+OD\\BC=OB+OC\end{cases}}\)
\(\Leftrightarrow AD=BC\)
Trường hợp A,C khác phía đối với O chứng minh tương tự
Mk k vẽ được hình xin lỗi bạn nhiều nha!
Chúc bạn học tốt ( -_- )